

Hydro Place. 500 Columbus Drive. P.O. Box 12400. St. John's. NL Canada A1B 4K7 t. 709.737.1400 f. 709.737.1800 www.nlh.nl.ca

June 1, 2018

Board of Commissioners of Public Utilities Prince Charles Building 120 Torbay Road, P.O. Box 21040 St. John's, NL A1A 5B2

Attention: Ms. Cheryl Blundon Director of Corporate Services & Board Secretary

Dear Ms. Blundon:

Re: An Application by Newfoundland and Labrador Hydro for approval of capital expenditures to increase the generating capacity at the Holyrood Thermal Generating Station - Improve Boiler Load Capacity – Units 1, 2 and 3.

Please find enclosed the original and 9 copies of the above-noted Application, plus supporting affidavit, project proposal, and draft order.

The Holyrood Thermal Generating Station (Holyrood) is an essential part of the Island Interconnected System and produces up to 40 percent of the Island's annual energy requirements. Hydro requires that Holyrood continue to operate reliably to provide capacity and energy to Island Interconnected customers until after interconnection to the North American grid.

Units 1, 2 and 3 at Holyrood are currently not able to achieve the maximum continuous ratings of 170 MW, 170 MW and 150 MW, respectively, due to abnormal fouling in the boiler air heater hot end baskets on each unit, fouling in the Unit 1 and 2 boiler economizers, and air leakage in the Unit 3 boiler air heaters due to worn sector plate liners and seals. As of May 30, 2018, the generating capability of Units 1, 2 and 3 have degraded to 116 MW, 70 MW and 110 MW, respectively.

Hydro is proposing restoring the design performance of the air heaters to re-establish the generating capacity of Units 1, 2 and 3 which includes replacement of the hot end air heater baskets in the boilers on each of Units 1, 2 and 3, and, replacement of the worn air heater sector plate liners and seals on Unit 3.

The estimated budget of this project is \$2,560,500. Separate from this project is an operating maintenance initiative to address economizer fouling restrictions on Units 1 and 2 through a new chemical cleaning technique. Hydro's boiler experts have advised that the combination of these activities, taking into account the level of effectiveness of the economizer cleaning

Ms. C. Blundon Public Utilities Board

maintenance activity, are expected to address the factors currently limiting capability of the units.

Should you have any questions, please contact the undersigned.

Yours truly,

Newfoundland & Labrador Hydro

Michael Ladha Legal Counsel & Assistant Corporate Secretary

ML/bds

cc: Gerard Hayes – Newfoundland Power Paul Coxworthy – Stewart McKelvey Stirling Scales ecc: Larry Bartlett – Teck Resources Limited Dennis Browne, Q.C. – Consumer Advocate Sheryl Nisenbaum – Praxair Canada Inc. Dennis Fleming – Cox & Palmer IN THE MATTER OF the Electrical Power Control Act, RSNL 1994, Chapter E-5.1 (the EPCA) and the Public Utilities Act, RSNL 1990, Chapter P-47 (the Act), and regulations thereunder;

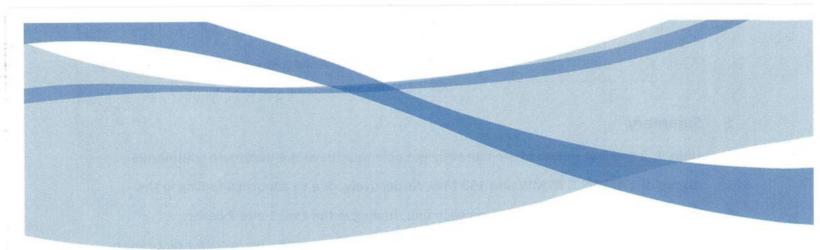
AND IN THE MATTER OF an Application by Newfoundland and Labrador Hydro for approval of capital expenditures to increase the generating capacity at the Holyrood Thermal Generating Station pursuant to Subsection 41(3) of the *Act*.

TO: The Board of Commissioners of Public Utilities (the Board)

THE APPLICATION OF NEWFOUNDLAND AND LABRADOR HYDRO STATES THAT:

- Newfoundland and Labrador Hydro (Hydro) is a corporation continued and existing under the *Hydro Corporation Act, 2007*, is a public utility within the meaning of the *Act*, and is subject to the provisions of the *Electrical Power Control Act, 1994*.
- 2. Hydro is the primary generator of electricity in Newfoundland and Labrador. As part of its generating assets, Hydro owns and operates the Holyrood Thermal Generating Station (Holyrood), which has three generating units with a combined generating capacity of 490 MW. Holyrood is an essential part of the Island Interconnected System and produces up to 40 percent of the Island's annual energy requirements. Hydro requires that Holyrood continue to operate reliably to provide capacity and energy to Island Interconnected customers until after interconnection to the North American grid.

- 3. Units 1, 2 and 3 at Holyrood are currently not able to achieve the maximum continuous ratings of 170 MW, 170 MW and 150 MW, respectively, due to abnormal fouling in the boiler air heater hot end baskets on each unit, fouling in the Unit 1 and 2 boiler economizers, and air leakage in the Unit 3 boiler air heaters due to worn sector plate liners and seals.
- As of May 30, 2018, the generating capability of Units 1, 2 and 3 have degraded to 116
 MW, 70 MW and 110 MW, respectively.
- 5. Hydro is recommending the restoration of the design performance of the air heaters to re-establish the generating capacity of Units 1, 2 and 3. This project proposal includes replacement of the hot end air heater baskets in the boilers on each of Units 1, 2 and 3, and, replacement of the worn air heater sector plate liners and seals on Unit 3.
- 6. Should the proposed project not proceed, it is anticipated that the generating capacity of Units 1, 2 and 3 will sustain similar or worsening de-rates during the next operating season.
- 7. The estimated capital cost of the project is \$2,560,500. The scope of work for this project is set out in the project description and justification document attached to the Application.


2

- 8. Hydro submits that the proposed capital expenditure is necessary to ensure that Hydro can continue to provide service which is safe and adequate and just and reasonable as required by Section 37 of the *Act.*
- 9. Therefore, Hydro makes Application that the Board make an Order pursuant to section 41(3) of the Act approving the capital expenditure of approximately \$2,560,500 to restore the design performance of the air heaters to increase the generating capacity of Units 1, 2 and 3 at the Holyrood Thermal Generating Station, including replacement of the hot end air heater baskets in the boilers on each of Units 1, 2 and 3, and, replacement of worn air heater sector plate liners and seals on Unit 3, as more particularly described in this Application and in the attached project description and justification document.

DATED at St. John's in the Province of Newfoundland and Labrador this 1st day of June 2018.

Michael Ladha Counsel for the Applicant Newfoundland and Labrador Hydro 500 Columbus Drive P.O. Box 12400 St. John's, NL A1B 4K7 Telephone: (709) 737-1268 Facsimile: (709) 737-1782

	Electrical
PROFESSIONA	Mechanical
RIN SEYMOUR	Civil
R.N. SEYMOUR	Protection & Control
SIGNATURE	Transmission & Distribution
OF NEWFOUNDER	Telecontrol
OF NEWFO	System Planning

Improve Boiler Load Capacity – Units 1, 2 and 3

Holyrood

June 1, 2018

A Report to the Board of Commissioners of Public Utilities

1 Summary

2 Units 1, 2 and 3 at Holyrood are currently not able to achieve the maximum continuous 3 ratings of 170 MW, 170 MW and 150 MW, respectively, due to abnormal fouling in the 4 boiler air heater hot end baskets on each unit, fouling in the Unit 1 and 2 boiler economizers, and air leakage in the Unit 3 boiler air heaters due to worn sector plate liners 5 6 and seals. Fouling reduces the size of the gas path through the boiler, which limits the 7 amount of air that can be pushed through for combustion, causing an increase in furnace 8 pressure to unacceptable limits. Traditional cleaning techniques have proven unsuccessful. 9 Air heater leakage causes some combustion air to bypass the furnace and travel directly up 10 the exhaust stack, limiting the amount of combustion air available. As of May 30, 2018, the generating capability of Units 1, 2 and 3 have degraded to 116 MW, 70 MW and 110 MW, 11 12 respectively. 13 14 This Supplemental Capital Budget Application is requesting the approval of a project aimed 15 at restoring the design performance of the air heaters to re-establish the generating 16 capacity of Units 1, 2 and 3. This project proposal is to replace the hot end air heater

baskets in the boilers on each of Units 1, 2 and 3 and replace worn air heater sector plate
liners and seals on Unit 3. The estimated budget of this project is \$2,560,500. Separate from
this project is an operating maintenance initiative to address economizer fouling restrictions
on Units 1 and 2 through a new chemical cleaning technique.¹ Hydro's boiler experts have
advised that the combination of these activities is expected to address the factors currently
limiting capability of the units.

¹ Hydro expects to re-establish close to full unit capacity following the combined efforts of the scope of this project and the planned chemical cleaning of the economizer during the annual maintenance outages. The chemical cleaning is a new activity for Hydro, and while expectations are that it will be effective, the exact outcome following cleaning and therefore resultant maximum capacity will be dependent on the effectiveness of the cleaning process.

TABLE OF CONTENTS

Summar	`у	i
1.0 Intro	ductior	۱3
2.0 Proje	ect Desc	ription 4
3.0 Justi	fication	
3.1	Existin	g System7
3.2	Operat	ting Experience
	3.2.1	Maintenance Activities11
	3.2.2	Maintenance History14
	3.2.3	Anticipated Useful Life
3.3	Develo	opment of Alternatives
3.4	Evalua	tion of Alternatives 15
4.0 Cond	lusion.	
4.1	Budge	t Estimate 17
4.2	Projec	t Schedule

Appendix A

1 **1.0 Introduction**

2 Hydro has experienced unit deratings at the Holyrood Thermal Generating Station 3 (Holyrood) in each of the winters of 2015/2016, 2016/2017 and 2017/2018. In 2015/2016, deratings due to worn re-heater tubes were addressed. Units 1 and 2 were de-rated in the 4 5 winter of 2016/2017 due to air flow concerns. During the 2017 outage season, Hydro 6 addressed issues related to air flow concerns by replacing worn cold end baskets and air 7 heater seals, as well as performing boiler tuning on all three units. Dry ice cleaning of the 8 Unit 1 and 2 economizers was also performed in 2017 to improve air flow. This cleaning was 9 successful in removing thousands of kilograms of ash from each economizer, but the results 10 were limited due to the strong adhesion of hard ash and limited access to the tightly staggered finned tubes in the Unit 1 and Unit 2 economizers. Because of the difficult access 11 12 to portions of the economizer bundles, the flow restriction was not improved significantly. 13 Hot end basket inspections at that time did not indicate an issue. 14 In late 2017 and through the winter of 2018, unacceptably high furnace pressures 15 16 developed causing continued unit deratings. Units 1, 2, and 3 are currently not able to achieve the maximum continuous generation ratings of 170 MW, 170 MW and 150 MW, 17 respectively, due to (i) fouling² of the boiler air heater baskets on Units 1, 2 and 3; (ii) 18 fouling of Units 1 and 2 boiler economizers; and, (iii) and air leakage inside the boiler air 19 heaters on Unit 3 from worn seals. Some fouling normally occurs as a by-product of 20 21 combustion; however, the current levels of hard ash build up on the air heater hot end

22 baskets and economizer tubes is restricting air flow and reducing heat transfer to

23 unacceptable levels. Air leakage in the air heaters reduces the ability to supply adequate

combustion air from the forced draft fans to the furnace. As of May 30, 2018, the

25 generating capabilities of Units 1, 2 and 3 have been reduced to 116 MW, 70 MW and 110

26 MW, respectively, due to these factors.

² Fouling in this context refers to an accumulation of boiler ash and other similar debris in various components of the air and gas paths through the boiler and associated ducting. Fouling can reduce boiler performance by reducing heat transfer if the deposits accumulate on heat transfer surfaces, and by air flow restrictions if the deposits accumulate in areas where the cross sectional flow area of air or gas is significantly impacted.

In late 2017, Hydro engaged Holyrood boiler service contractor, Babcock and Wilcox (B&W) 1 2 and an external consultant to investigate boiler performance issues and provide 3 improvement recommendations. Recommended actions included air heater work and 4 economizer cleaning that would re-establish the rated capacity of all three units. This 5 proposal outlines the justification for corrective actions to improve the capacity of Units 1, 2 6 and 3 with a focus on air heater work. Separate from this project is an operating 7 maintenance initiative to address economizer fouling restrictions on Units 1 and 2 through a 8 new chemical cleaning technique. The combination of these activities will address the 9 factors currently limiting capability of the units. In addition, Hydro has completed analysis 10 on the use of a fuel additive specifically targeted at controlling this back end furnace 11 fouling. It will be implemented on all three units when the units return to service in fall 12 2018. 13 **Project Description** 2.0 14 15 This project includes the installation of hot end air heater baskets servicing Units 1, 2 and 3. 16 The project also includes the replacement of sector plate liners and seals for Unit 3 air 17 heaters to address air leakage. 18 19 Hydro proposes that any additional items, material in dollar value and that meets 20 capitalization criteria, that require replacement and is related to the scope of work, will be 21 replaced within this project's budget. Such additions will be communicated to the Board via 22 the year end Capital Expenditures Variance report. 23 24 Execution is scheduled to occur during the planned 2018 annual outages for each unit. 25 Additional outage time may be required towards the end of the maintenance season. 26 Justification 27 3.0 28 The proposed project is required to improve the generating capability of Units 1, 2 and 3. If

29 the project is not completed, it is anticipated that the Holyrood generating units will sustain

- 1 similar or worsening de-rates during the next operating season.
- 2

3 This project is important to the reliability of the Island Interconnected System. To quantify 4 the potential impact on reliability should this project not be undertaken, Hydro completed 5 an assessment of the resultant increase in Loss of Load Hours (LOLH) and Expected 6 Unserved Energy (EUE) compared to the Conservative Supply Case results presented in its recently filed Near-term Generation Adequacy report. The difference in Holyrood unit 7 8 capacity between the two cases is provided in Table 1. The results of Hydro's supply 9 adequacy analysis for these are presented in Table 2. For ease of comparison, the results 10 from the Conservative Supply Case in Hydro's Near-term Generation Adequacy Report have 11 been reproduced in Table 3. As evident from the results, the reduced rating of the Holyrood 12 units materially increases the expected EUE and LOLH for the Conservative Supply Case. 13 Further, when combined with unit unavailability of 18% and greater, the continued deration of the Holyrood units results in violation of Hydro's planning criteria. 14

Holyrood Unit	Holyrood Unit Ratings with air flow restrictions as of May 30, 2018 (MW)	Rating in Hydro's Near-term Generation Report (MW)	Delta (MW)
1	116	170	(54)
2	70	170	(100)
3	110	150	(40)

Table 1: Comparison of Holyrood Current and Anticipated Ratings

Summary of Results					
P90 Analysis					
Year	2019	2020	2021	2022	
HRD DAFOR	Exp	ected Unserv	ved Energy (N	/IWh)	
15%	136	136	130	130	
18%	179	179	171	171	
20%	212	212	202	202	
	Exp	ected Custor	ner Outage H	lours	
15%	22,700	22,700	21,700	21,700	
18%	29,900	29,900	28,500	28,500	
20%	35,300	35,300	33,700	33,700	
	LOLH				
15%	2.68	2.68	2.57	2.57	
18%	3.45	3.46	3.31	3.31	
20%	4.03	4.03	3.86	3.86	

Table 2: Conservative Supply Case combined with Holyrood deration³

Table 3: Near-term Generation Conservative Supply Case⁴

Summary of Results					
P90 Analysis					
Year	2019	2020	2021	2022	
HRD DAFOR	Exp	ected Unserv	/ed Energy (N	/Wh)	
15%	37	37	36	35	
18%	57	57	55	55	
20%	74	74	71	71	
	Exp	ected Custor	mer Outage H	lours	
15%	6,200	6,200	5,900	5,900	
18%	9,600	9,600	9,200	9,200	
20%	12,400	12,400	11,900	11,900	
	LOLH				
15%	0.69	0.69	0.66	0.66	
18%	1.05	1.05	1.00	1.00	
20%	1.34	1.34	1.28	1.28	

- 1 At times, when the system requires capacity and there are material deratings at Holyrood,
- 2 Hydro may be required to operate gas turbines at a higher cost. Restoration of capacity is

³ Planning Criteria is EUE = 170 MWh; Annual Expected Outage Hours = 28,000; LOLH = 2.80

⁴ As presented in Hydro's Near-term Generation Adequacy Report, filed May 30, 2018 (revision 1). Planning Criteria is EUE = 170 MWh; Annual Expected Outage Hours = 28,000; LOLH = 2.80

- 1 expected to reduce the frequency and duration of running gas turbines.
- 2

3 Restoration of capacity that is anticipated through execution of the project and cleaning of 4 the economizer is required to fully avail of the benefits of recapture energy over the 5 Labrador Island Link (LIL). Technical analysis has been completed that dictate how much 6 capacity is required on the Avalon in order to provide for reliable service. If Hydro is in the 7 position to use recapture energy and shut down a Holyrood unit, the remaining units must 8 have the ability to operate at higher loads for spinning reserve requirements. Taking a 9 Holyrood unit offline can result in fuel savings through the use of off-island supply. 10 Restoration of Holyrood capacity provides for optimum dispatch of the generation sources 11 and the best opportunity to maximize the value of these savings. This would not be possible 12 with the units at the current significant derating. 13

14 3.1 Existing System

15 Originally rated for 150 MW, Units 1 and 2 were placed in service in 1969 and 1970,

16 respectively, and were upgraded to 170 MW in 1988 and 1989. The original equipment

17 manufacturer (OEM) for Unit 1 and Unit 2 boilers is General Electric (GE). Unit 3 is rated for

18 150 MW and was placed in service in 1979. The OEM for Unit 3 boiler is B&W.

19

20 Each unit includes a boiler that generates steam that spins the turbine and generator to 21 create electricity. The boiler creates heat to convert water into steam by burning fuel oil. 22 Burning oil requires oxygen, which is provided by outside air supplied by forced draft (FD) 23 fans. The fans are designed to push combustion air through air heaters to preheat it before 24 it is delivered to the furnace for combustion. FD fans also push the gas that is a product of 25 combustion from inside the furnace through the various sections of the boiler (superheater, 26 reheater, economizer and air heaters) to the stack where it is discharged to the atmosphere 27 (see Figure 1).

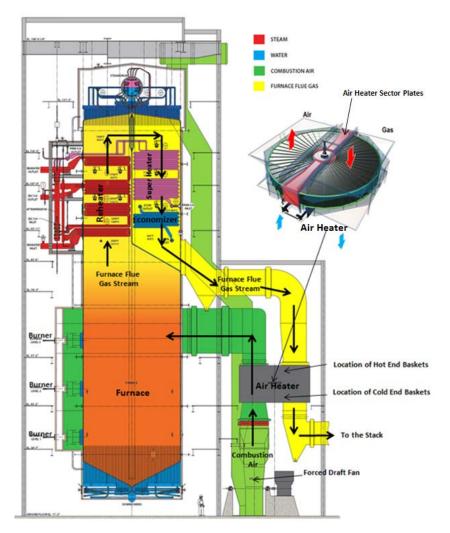


Figure 1: Boiler Cross Section - Holyrood.

1 There are two air heaters per boiler. The primary function of the air heaters is to recover 2 heat from the furnace gas and transfer that heat to the incoming boiler combustion air. 3 Each air heater contains a cylindrical rotor that turns slowly on a vertical axis. The rotor is equipped with two layers of heat transfer elements, referred to as baskets (see Figure 2). 4 The top layer is referred to as the hot end baskets and the lower layer is referred to as cold 5 end baskets. The layers containing both the hot and cold end baskets operate as one large 6 7 rotating unit, in essentially a heat transfer process. The rotor and baskets slowly rotate 8 inside the air heater picking up heat from the discharging furnace flue gas and transferring it 9 to the cold incoming air for improved combustion. The sector plates, which are shown in

- 1 Figure 2, are located on the top of the hot end baskets and bottom of cold end baskets. The
- 2 liners and seals on sector plates separate the hot flue gas and cold air ducts inside the air
- 3 heater and minimize the amount of air that leaks from the cold air stream to hot flue gas
- 4 stream. Excessive air leakage inside the air heater will result in insufficient air for
- 5 combustion and a reduction in the unit's generation capability (i.e. de-rating).

Figure 2: Boiler Air Heater

- 6 The major upgrades that have been completed on air heaters (Units 1, 2 and 3) from 2013-
- 7 2017 and the associated actual costs are provided in Table 4.

	Upgrades	Year	Cost
Unit 1	Replace cold end baskets, sector plate liners and seals;	2017	\$455,000
	and overhaul rotor.		
	Replace water wash piping and bearing pot cooling	2017	\$50,000
	water lines with stainless piping.		
Unit 2	Replace cold end baskets (west).	2014	\$128,000
	Replace cold end baskets (east).	2015	\$135,000
	Replace cold end sector plate liners and seals; and	2017	\$378,000
	overhaul rotor.		
	Replace water wash piping and bearing pot cooling	2017	\$50,000
	water lines with stainless piping.		
Unit 3	Replace cold end baskets and seals; and overhaul	2017	\$286,000
	rotor.		
	Replace water wash piping and bearing pot cooling	2017	\$50,000
	water lines with stainless piping		

Table 4: Major Upgrades on Air Heaters (Units 1, 2 and 3) from 2013 - 2017

1 3.2 **Operating Experience**

2 Boiler system components at Holyrood, specifically the air heaters and economizers, are 3 fouled due to the deposition of hard ash from combustion onto key equipment. This fouling 4 has restricted the air flow through the boiler air heaters and economizer. Due to this air 5 flow restriction, the furnace pressure inside the boiler increases. Maintenance of furnace 6 pressure is required for safe operation, from an employee and equipment perspective. The 7 furnace is designed for a specific maximum pressure, and if the pressure increases, there is 8 risk to the furnace. To maintain acceptable pressure levels, generation outputs have been 9 reduced. In addition, excessive air heater leakage due to wear of sealing components inside 10 the Unit 3 air heaters is further reducing the capability of the fans to provide sufficient air 11 flow through the Unit 3 boiler to support combustion required for higher generation 12 outputs.

13

14 Boiler fouling and air leakage in the air heaters normally occurs with operation, although

15 ash deposits that cause air heater fouling have typically been removed from air heaters with

16 conventional washing. Investigation shows this has been accumulating in recent years, now

17 having reached the point of impacting unit output.

1	3.2.1 Maintenance Activities
2	The following is a description of related maintenance activities completed during the annual
3	outages from 2015 to 2017 to restore and maintain unit capabilities.
4	
5	<u>2015 annual outage:</u>
6	The air heater baskets and steam coil air heaters were cleaned using conventional water
7	washing on both Units 1 and 2. Unit 2 was returned to service in October 2015 and was
8	capable of 170 MW. Unit 1 was returned to service in November 2015 and was restricted to
9	160 MW due to air flow limitations.
10	
11	<u>2016 annual outage:</u>
12	At the end of the 2015/2016 operating season and before the 2016 annual outage, the load
13	on Unit 1 was restricted to 140 MW due to air flow limitations. Unit 1 was taken off-line for
14	the annual outage on August 7, 2016.
15	• During the Unit 1 2016 annual outage, an Original Equipment Manufacturer field
16	service representative for the air heaters performed a cleaning of the air heater
17	baskets. The maximum load that could be achieved after returning Unit 1 to service
18	was 165 MW due to air flow limitations.
19	• Water washing of the economizer on Unit 1 was attempted in October 2016 with no
20	appreciable improvement. Unit 1 was returned to service in late October 2016. The
21	unit load capacity was limited to 165 MW.
22	• Unit 2 was taken off-line for the annual outage on June 20, 2016.
23	• In September 2016, Unit 2 was returned to service after its annual outage and was
24	restricted to 165 MW due to air flow limitations. Unit 2 was removed from service
25	on October 2016 for an air heater wash. When the unit was returned to service, 170
26	MW load was achieved.
27	• Both Units 1 and 2 were primarily limited by available combustion air, which became
28	the focus for maintenance in 2017.
29	• Unit 3 was not de-rated.

1 <u>2017 annual outage:</u>

At the end of the 2016/2017 operating season and before the 2017 annual outage,
the load was restricted to 120 MW on Unit 1 and 140 MW on Unit 2 due to air flow
limitations through the fouled air heaters and economizer. Unit 3 was not de-rated.
A boiler cleaning company that specialized in cleaning fouled boiler components was
contracted to use a dry-ice blasting technique⁵ on the economizers servicing Units 1
and 2 as a means to best use the available combustion air.

In 2017, the air heaters for both Units 1 and 2 were overhauled during the annual outage. The cold end air heater baskets were replaced due to wear and tear, and upgraded to enamel coating to allow for easier cleaning. The air leakage was corrected by replacing the sector plate liners and seals. This allowed for adequate fan capacity to provide the appropriate amount of combustion air. Boiler tuning was performed upon start-up in the fall to optimize the use of the available air on all three units.

15

16 <u>Recent Operating Experiences:</u>

Early in the 2017/2018 operating season, Units 1, 2 and 3 were rated at 150 MW, 154 MW, 17 18 135 MW, respectively. All three units experienced continual degradation in capability 19 throughout the remainder of the winter season. Conventional air heater washes made no 20 significant improvement, nor did attempts using high pressure (12,500 psi) water blasting of air heater baskets. As of May 30, 2018, the load on Units 1, 2 and 3 were restricted to 116 21 22 MW, 70 MW, and 110 MW respectively. The analysis by Hydro's investigation team and 23 B&W experts indicates that the fouling of the hot end air heater baskets (Units 1, 2 and 3) 24 and economizers (Units 1 and 2) needs to be addressed to correct the high furnace pressure 25 limitation. Additionally, the air leakage in the Unit 3 air heaters needs to be addressed by

⁵ This was used to blast and remove ash from the economizer tube sections (Units 1 and 2). Thousands of kilograms of ash were removed from each boiler economizer. However, due to the geometry of the economizer and its construction with very close layers of tubes, this cleaning technique could not remove the hard ash built up on the economizer tubes. Additional water washing of the economizers (Units 1 and 2) was completed after the dry-ice blasting to remove as much ash as possible.

- 1 performing similar work to that carried out on Units 1 and 2 in 2017.
- 2

3 <u>B&W Analysis and Recommendations</u>

- 4 The B&W engineering report, found in Appendix A, concluded the following:
- Fouling in the air heaters in all three units caused pressure drops higher than the
 design value.
- Fouling in the economizer in Units 1 and 2 caused pressure drops higher than the
 design value.
- 9 The accumulated fouling is restricting the gas path and driving unacceptably high
 10 furnace pressures, which are limiting unit output.
- Air heater leakage in Unit 3 is up to three times higher than design value.
- 12
- 13 In its report, B&W concluded that if the air heater and economizer pressure in Units 1 and 2
- 14 are restored to normal, the full rated load of 170 MW will be available on both units
- 15 without exceeding the furnace pressure alarm point limit. With respect to Unit 3, it was
- 16 concluded that full load operation to 150 MW will be restored if the fouled air heater
- 17 baskets are replaced. B&W also recommends that the high air heater leakage be corrected
- 18 to reduce Forced Draft fan power consumption, which will provide improved operation.
- 19
- 20 Based on a review of updated unit data at the end of April, B&W anticipates that "replacing
- 21 or cleaning of fouled heat transfer surfaces to "as new" condition (if possible) will restore
- 22 the design maximum load capacity."⁶
- 23
- 24 The investigation also indicated that fuel oil at Holyrood has consistently been within
- 25 specification since 2015 through to present. In its report, B&W observed that the amount of

⁶ Although restoring pressures to normal may not be entirely possible, Hydro expects to restore close to full unit capacity following the combined efforts of Air Heater Basket replacement, planned chemical cleaning of the economizer, and replacement of the Unit 3 Air Heater sector plate liner and seals during the annual maintenance outages. The chemical cleaning of the economizer is a new activity for Hydro, and while expectations are that it will be effective, the exact outcome following cleaning, and therefore resultant maximum capacity, will be dependent on the effectiveness of the economizer cleaning.

1	vanadium in the fuel decreased significantly in 2006 as a result of a new fuel specification.
2	Vanadium is a metal present in all crude oils and is a known contributor to fouling. Despite
3	the lower vanadium in the fuel, B&W recommended that Hydro use a fuel additive designed
4	to control back end furnace fouling from other constituents, which Hydro will implement
5	prior to unit start-ups in Fall, 2018.
6	
7	3.2.2 Maintenance History
8	The cost of annual inspection and necessary repairs on the air heaters, including the baskets
9	and seals, in the last five years has ranged from \$25,000 to \$75,000 for each unit.
10	
11	3.2.3 Anticipated Useful Life
12	The replacement hot end baskets for the air heaters on Units 1, 2, and 3 and replacement
13	sector plate liners and seals for the air heater on Unit 3 are expected to last until Units 1, 2
14	and 3 are no longer required for generation.
15	
16	3.3 Development of Alternatives
17	The following alternatives have been evaluated:
18	
19	Alternative 1 - Purchase of market electricity and use of recapture energy
20	The objective of this alternative is to minimize or replace the generation requirements from
21	Holyrood.
22	
23	Alternative 2 - Boiler operation without hot end air heater baskets
24	This alternative involves removal of hot end air heater baskets on each boiler to reduce the
25	restriction on the flow of combustion air and furnace flue gas.
26	
27	Alternative 3 - Chemical Cleaning
28	This cleaning is performed using a high-pressure water jet containing a chemical to soften
29	and discolve faulting on the bet and six bester backets. The deposite can then be remained
25	and dissolve fouling on the hot end air heater baskets. The deposits can then be removed

- 1 by the mechanic effect of the high-pressure water jet.
- 2 3 <u>a. In-Place chemical cleaning</u>
- This alternative involves in-place chemical cleaning of hot end air heater baskets on
 each boiler.
- 6 <u>b. External chemical cleaning</u>
- 7 This alternative involves removal of the hot end air heater baskets, chemical cleaning of
- 8 removed baskets, and reinstallation of cleaned baskets (Units 1, 2 and 3).
- 9
- 10 <u>Alternative 4 Replacement</u>
- 11 This alternative involves the replacement of hot end air heater baskets (Units 1, 2 and 3)
- 12 and replacement of sector plate liners and seals (Unit 3).
- 13

14 **3.4** Evaluation of Alternatives

- 15 Alternative 1 Purchase of market electricity and use of recapture energy
- 16 While Hydro intends to use both recapture energy and contracted market supply, sufficient
- 17 available capacity needs to be maintained at Holyrood to ensure a reliable supply of energy
- 18 is available in the case of an interruption. Therefore, this alternative is not acceptable.
- 19

20 Alternative 2 - Boiler operation without hot end air heater baskets

- 21 As discussed by B&W in Appendix A, the alternative of operating the boilers without the hot
- 22 end air heater baskets is not acceptable for the following reasons:
- Structural damage may result to the air heaters and downstream expansion joints
- 24 due to unacceptably high temperate flue gas contacting these components.
- A significant drop in boiler efficiency will occur due to reduced combustion air
- 26 temperature that could lead to unacceptable combustion products such as high
- 27 carbon monoxide and high unburned carbon loss.

- 1 <u>Alternative 3a In-place chemical cleaning</u>
- 2 Alternative 3a is deemed not acceptable for the following reasons:
- The restricted access to air heater baskets and tight physical spaces (see Figure 3)
 limit the ability to chemically soak, agitate and remove the ash, severely limiting the
 effectiveness of this alternative. This is supported by the previous unsuccessful
 attempts to use high pressure (12,500 psi) water blasting to clean the hot end air
 heater baskets.
- Due to corrosion, the structural integrity of the existing hot end air heater baskets is
- 9 unknown. There is a risk that the baskets may not re-useable following aggressive
- 10 cleaning.

Figure 3: Hot End Air Heater Baskets.

- 11 <u>Alternative 3b External chemical cleaning</u>
- 12 The cost of Alternative 3b is more than the cost for Alternative 4 Replacement by
- 13 approximately 11%. In addition, due to corrosion, the structural integrity of the existing hot
- 14 end air heater baskets is unknown and there is a risk that the baskets may not be re-useable
- 15 following removal and aggressive cleaning.

1 <u>Alternative 4 - Replacement</u>

- 2 Alternative 4 is a cost-effective option and is expected to produce better results than the re-
- 3 use of cleaned baskets. Therefore Alternative 4 is selected for this project.
- 4

5 4.0 Conclusion

The current de-ratings of Units 1, 2 and 3 are caused by fouling of the units' air heater hot 6 7 end baskets; fouling of Units 1 and 2 economizers; and air leakage inside Unit 3 air heaters. 8 Based on a review of updated unit data at the end of April, B&W anticipates that "replacing 9 or cleaning of fouled heat transfer surfaces to "as new" condition (if possible) will restore 10 the design maximum load capacity. The least-cost alternative to address these issues and 11 improve generation capability is to replace the hot end air heater baskets on all three units 12 and replace the sector plate liners and seals on Unit 3 air heaters. Hydro will also chemically 13 clean the economizers for each unit during the 2018 maintenance work. Hydro expects to restore close to full unit capacity following the combined efforts of each of these work 14 15 scopes.

16

17 4.1 Budget Estimate

18 The project budget estimate is provided in Table 5.

Project Cost: (\$ x1,000)	<u>2018</u>	<u>2019</u>	Beyond	<u>Total</u>
Material Supply	0.0	0.0	0.0	0.0
Labour	187.2	0.0	0.0	187.2
Consultant	0.0	0.0	0.0	0.0
Contract Work	1,910.7	0.0	0.0	1,910.7
Other Direct Costs	1.2	0.0	0.0	1.2
Interest and Escalation	41.6	0.0	0.0	41.6
Contingency	419.8	0.0	0.0	419.8
TOTAL	2,560.5	0.0	0.0	2,560.5

Table 5: Project Budget Estimate

1 4.2 Project Schedule

2 The anticipated project schedule is provided in Table 6.

	Activity	Start Date	End Date
Planning	Open project;	June	June
	Prepare work breakdown structure; and	2018	2018
	Prepare scope statement		
Procurement	Procure air heater baskets (hot end) for all	June	July
	units and air heater sector plate liners and	2018	2018
	seals for Unit 3.		
Construction	Replace air heater baskets on all units, and	July	October
	sector plate liners and seals on Unit 3.	2018	2018
Commissioning	Perform load test, all units.	October	October
		2018	2018
Closeout	Prepare project closeout documents.	November	November
		2018	2018

Table 6: Project Schedule

Appendix A

B&W Engineering Study Report

	B RA pgg canada
Therr	nal Power Department
т	echnical Services
En	gineering Study Report
Customer:	Newfoundland and Labrador Hydro (NLH) Holyrood Units #1, #2, #3
Subject:	Performance Study Unit Capacity Limitations
Ref No:	B&W Project 312C Rev 02, April 15 / 2018
Prepared By:	Brian Jordan P. Eng Project Engineer
Reviewed By:	Malcolm Mackenzie, P. Eng.

 $\ensuremath{\textcircled{\sc 0}}$ 2018 THE BABCOCK & WILCOX PGG CANADA. ALL RIGHTS RESERVED.

This document is the property of The Babcock & Wilcox PGG Canada (B&W) and is "CONFIDENTIAL AND PROPRIETARY" to B&W. Recipient and/or its representatives have, by receiving same, agreed to maintain its confidentiality and shall not reproduce, copy, disclose or disseminate the contents, in whole or in part, to any person or entity other than the Recipient and/or Recipient's representatives without the prior written consent of B&W.

TABLE OF CONTENTS

LIST OF FIGURES						
LIST OF TABLES	5					
1 INTRODUCTION	1 INTRODUCTION					
2 EXECUTIVE SUMMARY	8					
2.1 UNITS #1 AND #2	9					
2.2 UNIT #3	2					
2.3 FUEL RELATED ISSUES (COMMON UNITS 1,2,3)	4					
3 CONCLUSIONS AND RECOMMENDATIONS	5					
3.1 UNITS#1 AND#2	5					
3.1.1 Conclusions	5					
3.1.2 Recommendations	7					
3.2 UNIT#3	7					
3.2.1 Conclusions	8					
3.2.2 Recommendations	8					
3.3 FUEL RELATED ISSUES (COMMON UNITS 1,2,3)	Э					
3.3.1 Conclusions	9					
3.3.2 Recommendations	9					
4 UNITS #1 AND #2	D					
4.1 Unit Description and History	С					
4.2 BASIS OF STUDY	1					
4.2.1 Fuel	1					
4.2.2 Base Heat Balance Information	1					
4.2.3 Unit Operating Data	1					
4.2.4 Unit Physical Arrangement	2					
Newfoundland and Labrador Hydro (NLH) Holyrood Station	=					

Engineering Study - Unit Capacity Limitations

Page 2 of 90

Babcock & Wilcox PGG Canada

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

4.2.6	Boiler Surface Heat Transfer Effectiveness Calculations	
4.2.7	Furnace Heat Transfer Effectiveness Calculations	
4.2.8	Air Heater Heat Transfer Effectiveness Calculations	
4.3 DI	SCUSSION OF RESULTS – UNITS #1 AND #2	
4.3.1	Review of Operating Data	
4.3.2	Unit Heat Rate	25
4.3.3	Fuel Oil Flow	
4.3.4	Restore Unit Output by Reducing Flue Gas Pressure Drops	
4.3.5	Other Considerations to Restore Unit Load	
4.3.6	Heating Surface Effectiveness (Kf Study)	
5 UNIT	#3	38
5.1 UN	IIT DESCRIPTION AND HISTORY	
5.2 BA	SIS OF STUDY	
5.2.1	Fuel	
5.2.2	Base Heat Balance Information	
5.2.3	Unit Operating Data	
5.2.4	Unit Physical Arrangement	
5.2.5	Heat and Mass Balance Calculations	
5.2.6	Boiler Surface Heat Transfer Calculations	
5.2.7	Furnace Heat Transfer Effectiveness Calculations	
5.2.8	Air Heater Heat Transfer Effectiveness Calculations	
5.3 DI	SCUSSION OF RESULTS	41
5.3.1	Review of Operating Data	41
5.3.2	Turbine Generator Heat Rate	41
5.3.3	Deviations from Design Turbine – Boiler Boundary Conditions	43
5.3.4	Fuel Oil Flow	
5.3.5	Boiler Efficiency and Air Heater Leakage	
5.3.6	FD Fan Duty Requirements – Design vs Current	
Newfound	and and Labrador Hydro (NLH) Holyrood Station	

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

5.3.7 FD Fan Capacity Discussion
5.3.8 Air Heater 'ARVOS' basket replacement
5.4 HEATING SURFACE EFFECTIVENESS (KF STUDY) 52 6 FUEL OIL RELATED ISSUES (COMMON UNITS #1,2,3) 55 6.1 ATOMIZING TEMPERATURE 57 6.2 FUEL OIL ADDITIVES 59 6.3 AIR HEATER DIFFERENTIAL TREND – OCT 22, 2017 TO JAN 4, 2018 (UNIT #3) 61 6.4 HEATING SURFACE REMOVAL 63 6.4.1 Air Heater Heating Surface Removal 63 6.4.2 Economizer Heating Surface Removal 65 7 WARRANTY / LIMITATION OF LIABILITY 67 8 APPENDICES 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR 68 8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988 72 8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 67 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 Rev 2) 68 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING) 69 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases 10 Figure 2 Unit #3 Potential MW Output In
6.1 ATOMIZING TEMPERATURE 57 6.2 FUEL OIL ADDITIVES 59 6.3 AIR HEATER DIFFERENTIAL TREND – OCT 22, 2017 TO JAN 4, 2018 (UNIT #3) 61 6.4 HEATING SURFACE REMOVAL 63 6.4.1 Air Heater Heating Surface Removal 63 6.4.2 Economizer Heating Surface Removal 65 7 WARRANTY / LIMITATION OF LIABILITY 67 8 APPENDICES 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR 68 8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988 72 8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 67 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 REV 2) 88 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING) 69 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases 11 Figure 2 Unit #2 Potential MW Output Increases 13 Figure 4 Units #1 and #2 Potential MW O
6.2 FUEL OIL ADDITIVES
6.3 AIR HEATER DIFFERENTIAL TREND – OCT 22, 2017 TO JAN 4, 2018 (UNIT #3)
6.4 HEATING SURFACE REMOVAL
6.4.1 Air Heater Heating Surface Removal 63 6.4.2 Economizer Heating Surface Removal 65 7 WARRANTY / LIMITATION OF LIABILITY 67 8 APPENDICES 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR 68 8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988. 72 8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 87 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 REV 2). 88 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING). 89 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3). 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases. 10 Figure 3 Unit #3 Potential MW Output Increases 11 11 11 Figure 3 Unit #3 Potential MW Output Increases 13 13 13 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency. 27
6.4.2 Economizer Heating Surface Removal 65 7 WARRANTY / LIMITATION OF LIABILITY 67 8 APPENDICES 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR BOILER #1 & 2 68 8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988 72 8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 87 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 REV 2) 88 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING) 89 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases 11 Figure 3 Unit #3 Potential MW Output Increases 11 11 11 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency 27
7 WARRANTY / LIMITATION OF LIABILITY 67 8 APPENDICES 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR BOILER #1 & 2 68 8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988 72 8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 87 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 REV 2) 88 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING) 89 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases 10 Figure 3 Unit #3 Potential MW Output Increases 11 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency 27
8 APPENDICES 68 8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR BOILER #1 & 2 68 8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988. 72 8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 87 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 Rev 2) 88 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING) 89 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases 10 Figure 3 Unit #3 Potential MW Output Increases 11 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency 27
8.1 ALSTOM LETTER FRITZ VOGEL – NLH AUG 3, 2000 "PREDICTED PERFORMANCE DATA FOR BOILER #1 & 2
BOILER #1 & 2688.2TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988
8.2 TURBINE HEAT BALANCE CONDITIONS UNITS #1 AND #2 UPRATED 1988
8.3 B&W BOILER PERFORMANCE DATA SHEET (C/7391) 87 8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 Rev 2) 88 8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING) 89 8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures 10 Figure 1 Unit #1 Potential MW Output Increases 10 Figure 2 Unit #2 Potential MW Output Increases 11 Figure 3 Unit #3 Potential MW Output Increases 13 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency 27
8.4 UNIT #3 HEAT BALANCE DIAGRAM (NLH 1403-200-M001 Rev 2)
8.5 UNIT #3 FD FAN PERFORMANCE CURVE (SHELDONS ENGINEERING)
8.6 ARVOS REPLACEMENT HOT END HEATING SURFACES PERFORMANCE (UNIT #3) 90 List of Figures Figure 1 Unit #1 Potential MW Output Increases. 10 Figure 2 Unit #2 Potential MW Output Increases. 11 Figure 3 Unit #3 Potential MW Output Increases. 13 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency. 27
List of FiguresFigure 1 Unit #1 Potential MW Output Increases.10Figure 2 Unit #2 Potential MW Output Increases.11Figure 3 Unit #3 Potential MW Output Increases.13Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency.27
Figure 1 Unit #1 Potential MW Output Increases. 10 Figure 2 Unit #2 Potential MW Output Increases. 11 Figure 3 Unit #3 Potential MW Output Increases. 13 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency. 27
Figure 2 Unit #2 Potential MW Output Increases. 11 Figure 3 Unit #3 Potential MW Output Increases. 13 Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency. 27
Figure 3 Unit #3 Potential MW Output Increases
Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency
Figure 5 Unit #1 Furnace Pressure Design Vs Actual
Figure 6 Unit #2 Furnace Pressure Design Vs Actual
Figure 7 Unit #1 Pressure Drops Prorated to 174.2 MW
Figure 8 Unit #2 Pressure Drops Prorated to 174.2 MW
Newfoundland and Labrador Hydro (NLH) Holyrood Station
Engineering Study – Unit Capacity Limitations Page 4 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Figure 9 Unit #1 Furnace Pressure - Restore Surface Cleanliness/Efficiency	. 32
Figure 10 Unit #2 Furnace Pressure - Restore Surface Cleanliness / Efficiency	. 33
Figure 11 West FD Fan Jan 4/18 Unit #3	. 48
Figure 12 East Fan Jan 4/18 Unit #3	. 49
Figure 13 FD Fans Estimated Operating Point, 150 MW, Jan 4/18 Unit #3	. 50
Figure 14 FD Fan Performance - New ARVOS Air Heater Hot End Elements Unit #3	. 52
Figure 15 Unit #3 Potential MW Output Increase from Improved Efficiency	. 54
Figure 16 Fuel Oil Sulphur % by Wt. (1995-2017)	. 55
Figure 17 Fuel Oil Vanadium PPM (1995-2017)	. 56
Figure 18 Atomization Temperature vs Fuel Oil Viscosity Units 1 & 2	. 57
Figure 19 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Celsius)	. 58
Figure 20 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Fahrenheit)	. 58
Figure 21 B&W Recommended MgO Dosing Rate Ib/Mwhr	. 60
Figure 22 Air Heater Differential Index - Unit 3	. 62
Figure 23 Unit 3 MW Output Oct 2017- Jan 2018	. 62
Figure 24 Air Heater ACET Oct 2017- Jan 2018 Unit 3	. 62
List of Tables	
Table 1 Units #1 and #2 Operating Data Conditions	. 22
Table 2 Units #1 and #2 Heat Rate Effect on Furnace Pressure	. 26
Table 3 Fuel Oil Flow Calculated/Expected Units #1 and #2	. 28
Table 4 Maximum Load As Limited by Furnace Pressure- Restore A/H and/or Econ Pressure	3
Drop	. 33
Table 5 Kf and FEGT Summary, Units #1 and #2	. 36
Table 6 Stack Temperature Change for Change in Upstream Gas Temperature	. 37
Table 7 Turbine - Generator Heat Rate Design vs Current Unit #3	
Table 8 Heat Rate Corrections Unit #3	. 43
Table 9 Fuel Oil Flow Calculated/Expected Unit #3	. 44
Table 10 Boiler Efficiency and Air Heater Leakage (Unit #3)	. 45
Table 11 FD Fan Airflow Requirements - Design vs Current (Unit #3)	. 46

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study - Unit Capacity Limitations

Page 5 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Table 12 Fd Fan Pressure Rise - Design Vs Operating Unit #3	47
Table 13 Arvos Replacement Hot End Heating Elements Performance	51
Table 14 Kf and FEGT Summary Unit #3	53

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 6 of 90

Page

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

1 INTRODUCTION

The three oil fired units at Newfoundland and Labrador Hydro's Holyrood station are currently not capable of generating their rated megawatt outputs. Newfoundland and Labrador Hydro (NLH) requested B&W to perform this engineering study to identify the causes of the current limitations and make recommendations to return the units to full load capability. The B&W proposal for this study was B&W reference TP001082 issued on 21 November 2017. A two stage approach was proposed. The first stage identifies the causes of load limitations and the second stage focuses on the steam generator heating surface effectiveness. This report summarizes the results of both stages.

The Unit #1 and #2 boilers at Holyrood are Combustion Engineering (CE) units built in the late 1960's. The Unit #3 boiler was provided by Babcock & Wilcox Canada (B&W) in 1979. All three boilers are pressurized (i.e. forced draft fans only). The turbine-generator sets for all three units were supplied by Hitachi Ltd. The three units were originally rated at 150 MW (Gross). Units #1 and #2 were up-rated to 174.2 MW in 1988 and 1989 respectively.

The maximum unit load for Units #1 and #2 was limited to 133 and 125 MW (gross) respectively by furnace pressure per the January / February 2018 operating data considered in this study. The maximum load for Unit #3 was limited by FD fan capacity to128 MW per January 2018 operating data.

The load limitation for Unit #1 and #2 is maximum furnace pressure thus this study focuses on the factors which affect furnace pressure for these units. The load limiting factor for Unit #3 is FD fan capacity so the focus is on fan capacity.

The common fuel oil supply system is also considered with respect to issues that affect boiler performance.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 7 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

2 EXECUTIVE SUMMARY

Recent losses in the capacity of the three Holyrood units are primarily a result of:

- i) Increases in air and flue gas pressure drops across the cold end boiler heating surfaces (economizers and air heaters) due to oil firing deposits (fouling) on these surfaces. These deposits form predominantly during periods of low load and startup when the heating surfaces are cold and combustion efficiency is low.
- Degradation of unit heat rate which increases the required heat input per MW.
 These increases lead to increased furnace pressure and FD fan loading in turn.

Units #1 and #2 are currently load limited by the maximum allowable furnace pressure. Unit #3 is load limited by the FD fans.

Reductions in maximum load capability for Units #1 and #2 have been present since 2015/2016. The reduction in maximum load for Unit #3 occurred relatively quickly in the Oct 2017-Jan 2018 time period.

Due to excessive deposition, all three units experience increased draft losses. The air heaters on all three units are affected. Units 1&2 are equipped with extended surface (finned) economizers which also experience increased draft losses. Replacing or cleaning of fouled heat transfer surfaces to 'as new' condition (if possible) will restore the design maximum unit load capability.

If unit load capability is restored by cleaning and/or replacing heat transfer surfaces, reoccurrence of unit de-rates caused by fouling can be prevented by:

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 8 of 90

- Ensuring air heater Average Cold End Temperatures (ACET) are maintained above 212 F (100 C) at all times.
- Reinstating use of the fuel MgO dosing system
- Increasing the fuel oil atomizing temperature to ensure proper atomization and combustion.
- Ensuring sootblowing steam is dry

The key findings of this study are outlined below.

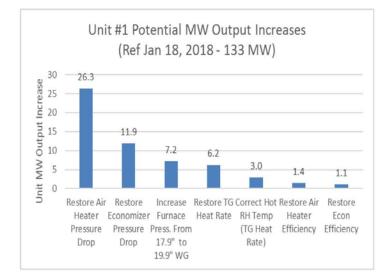
2.1 Units #1 and #2

The maximum output of Units #1 and #2 is currently limited by the maximum allowable furnace pressure. Maximum furnace pressure is established by the boiler manufacturer according to the structural design of the boiler and furnace. Unit #1 was limited to 133 MW on Jan 18, 2018 at a furnace pressure of 17.9" wg. Unit #2 was limited to 125 MW on Feb 2, 2018 at a furnace pressure of 19.9" wg. Loads of 170 MW were last achieved in Jan 2015 and Oct 2016 for Units #1 and #2 respectively.

The operating furnace pressures are significantly higher than design primarily due to the combination of:

- a) Higher than design air heater and economizer pressure drop due to fouling of the heating surfaces
- b) Higher than design unit heat rate due to reduced boiler efficiency and increased Turbine Generator (T-G) heat rate.
- c) Higher than design air flows

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations


Page 9 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

The potential increases in unit load as limited by furnace pressure that would occur if the above issues are corrected are illustrated in Figures #1 and #2. The gains associated with restoring economizer / air heater pressure drops are based on new heating surfaces or surfaces restored to "as new" condition and are thus best case scenarios.

Unit heat rate could be restored by restoring T-G efficiency, correcting lower than design hot reheat steam temperatures, and restoring air heater / economizer heat transfer efficiency (Boiler efficiency).

The higher than design air flows are due to underestimation of the combustion air quantity as indicated by the OEM boiler supplier data sheets (Appendix 8.1) and are therefore not considered 'correctable'.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 10 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Unit #2 Potential MW Output Increases (Ref Feb2, 2018 - 125 MW) 30 26.0 Unit MW Output Increase 20 16.0 15 10 3.2 2.9 5 1.61 1.45 0 Restore Air Restore TG Correct Hot Restore Air Restore Econ Restore Fconomizer Heater Heat Rate RH Temp (TG Heater Efficiency Pressure Pressure Heat Rate) Efficiency Drop Drop

Figure 2 Unit #2 Potential MW Output Increases

If both air heater and economizer pressure drops are restored, the full rated 174.2 MW will be achievable on both units without exceeding the current 20" WG furnace pressure alarm point limit. According to site reports, cleaning of these heating surfaces has proven very difficult in the past. Unless more effective methods can be employed such as chemical cleaning the most effective means of reducing furnace pressure would be to replace the fouled air heater elements. Replacement of economizer surfaces would very likely not be economically viable.

Less significant increases in maximum unit load capability are possible by restoring turbine / generator (T-G) heat rate.and/or restoring the heat transfer effectiveness of the boiler heating surfaces. Results of the 'Stage 2' study indicate poor heat transfer effectiveness of the air heaters and economizers. It is important to note that if pressure drops as above are restored by surface cleaning or replacement, a significant portion of the MW gains from increased boiler efficiency will also be realized along with the associated fuel savings.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 11 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Unit # 1 was operating at a furnace pressure of 17.9" wg on January 18, 2018, reportedly load limited by furnace pressure. The reason for this lower operating pressure at that time is unknown. If the maximum operating furnace pressure is increased to 19.9" as per Unit #2, an increase in maximum load of 7.2 MW would be realized.

The reheaters on both units are underperforming significantly. While the cause of poor air heater and economizer performance is clearly fouling as evidenced by high pressure drops, the cause of poor reheater heat transfer performance is not known and should be investigated. Sootblower usage patterns and blowing pressures may need to be adjusted to improve effectiveness. Poor reheater heat transfer effectiveness reduces unit efficiency (and MW output) on four fronts:

- a) Low hot reheat temperature (increased T-G heat rate)
- b) High burner tilts (less furnace effectiveness loss of boiler efficiency)
- c) High superheat sprayflows (increased T-G heat rate).
- d) Increase in stack temperature. (loss of boiler efficiency)

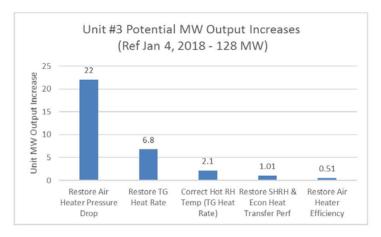
Of the above, item a) is the most significant.

2.2 Unit #3

Unit #3 is load limited by the current capability of the FD fans. Maximum load dropped from 150 MW in October 2017 to 128 MW on January 4, 2018 as air heater pressure drop increased. The pressure drop increased most significantly during lower load operation (less than 100 MW) and when air heater Average Cold End Temperature was less than 100 C (212 F).

The fan VIV's have been restricted to 54/70% open on the east/west fans respectively due to inlet ducting vibration which occurs at higher openings under some operating conditions.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations


Page 12 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

Without this restriction, full load operation would have been attainable on January 4, 2018 when load was limited to 133 MW. An inspection and test program should be implemented to determine how the full fan capacity can be restored.

The required FD fan duty is higher than design primarily due to higher than expected air heater pressure drop and higher than design Unit heat rate (lower than design unit efficiency). Full load operation would be restored given the current FD fan VIV restrictions if the fouled hot end air heater elements are replaced with the proposed "ARVOS" elements and if the existing cold end baskets are clean and in good condition.

With reference to the Jan 4, 2018 operating point (128 MW), increases in unit load capability as per Figure #3 would be possible for fixed fuel input. The largest contributor to unit efficiency reductions is turbine – generator inefficiencies. The largest boiler related contributor to the increase in unit heat rate is low hot reheat temperature.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 13 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

The heat transfer effectiveness of the Unit #3 superheater and reheater declined significantly during the time period from Oct 2017 to Jan 2018. These surfaces should be inspected for cleanliness to determine the cause of this decline. Sootblowing patterns and/or blowing pressures may need to be revised to improve cleanliness.

2.3 Fuel Related Issues (Common Units 1,2,3)

The quality of fuel oil has improved significantly in recent years. A significant reduction in fuel oil Vanadium and Sulphur content occurred in 2006. These improvements would be expected to reduce the tendency towards boiler cold end (air heater and economizer) fouling and boiler corrosion. From a combustion standpoint, the currently utilized fuels are very close to the original Unit #3 design fuel.

The current fuel oil atomizing temperature (approx. 187 F) is lower than required for optimal combustion. It is recommended to increase firing temperature to 220-225 F to ensure proper combustion with the current range of oil viscosities. The MgO additive system was taken out of service in 2014 and reductions in unit load capability for Units #1 and #2 started to occur in 2015-2016 and Unit #3 in late 2017. This system should be placed back into service and the oil dosed at a rate of 1 lb. MgO per lb. V2O in the fuel oil.

The Unit #3 air heater fouled rapidly between Oct 2017 to Jan 2018. During this time period, air heater pressure drop increased most notably during periods of both low load operation and low ACET. When ACET was maintained above 212 F there was no significant increase in pressure drop. It is recommended that air heater ACET is maintained at a minimum of 212 F for all three units.

For Unit #3, the combination of low load operation (possibly poor combustion due to low atomizing temperatures), the lack of MgO additives, and low ACET is the most likely cause air heater fouling that occurred between October 2017 and January 2018.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 14 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Fouling in the Unit #1 and Unit #2 air heaters and economizers occurred between 2015-16 and 2018. The operating conditions during which this fouling occurred is unknown. It is most likely that the economizer fouling occurred start-up operation and the air heater during low load and/or start-up operation.

3 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations of this study are summarized below:

3.1 Units #1 and #2

3.1.1 Conclusions

- a) The current maximum achievable load of Units #1 and #2 is limited by furnace pressure due to the combination of the following factors:
 - i. The draft loss across boiler surfaces is higher than design, most notably the economizer and air heater
 - ii. Unit efficiency is lower than design
 - iii. The calculated fuel air flow requirements (per unit fuel flow) are higher than original design
- b) The air heater and economizer pressure drops have increased significantly between the 2015/16 and 2018
- c) Pressure drops across the superheater and reheater are significantly higher than design but are not a major contributor to higher than design furnace pressure.
- d) Reheater heat absorption is lower than design as evidenced by lower than design hot reheat steam temperatures. Low hot reheat temperatures are leading to an up to 1.5% increase in TG heat rate.
- e) The current largest contributors to higher than design furnace pressures and unit derating are:
 - i. For Unit #1, high air heater pressure drop

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 15 of 90

Babcock 8	Wilcox	PGG	Canada

B&W Ref. 312C

ii. For Unit #2, high economizer pressure drop

f) Restoring the air heater and/or economizer pressure drops to original design would increase maximum load as limited by furnace pressure per the following table: (Note that restoring both components results in increase above that of individual components- if just one component is restored, furnace pressure is still limited by restriction in the other)

MAXIMUM LOAD AS LIMITED BY FURNACE PRESSURE					
	Unit #1	Unit #2			
Maximum Load Per 2018 Data	MW	133	125		
Increase Maximum Furnace Pressure up to 19.9" WG (Unit #1)		140	125		
Restore Design Air Heater Pressure Drop		159	141		
Restore Design Economizer Pressure Drop	MW	145	151		
Restore Both Economizer and Air Heater	MW	175	175		

- g) Improved heat transfer and boiler efficiency will follow restoration of heating surface cleanliness. FD fan power consumption will also be reduced.
- h) Alternate methods of economizer / boiler surface cleaning such as explosives or acoustic shock – blast methods could be considered if it is not possible to clean these surfaces by conventional means.
- Maximum boiler load as limited by furnace pressure may be increased if modifications/repairs to the turbine/generator set are made to improve heat rate.
- j) It may be possible to increase the current furnace pressure alarm and trip points. The original boiler supplier could advise if this is possible.
- k) The heat transfer performance of the economizer and air heater on both units is significantly lower than design, reducing boiler efficiency significantly
- The heat transfer performance of the reheater heating surfaces is significantly lower than design, reducing Turbine-Generator efficiency significantly and boiler efficiency.
- m) Removal of air heater heating surfaces is not recommended due to the negative effect on combustion efficiency and structural limitations of downstream flues/stack.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 16 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

- n) Partial removal of economizer heating surfaces to reduce pressure drop should be considered as a last resort only due to negative effect on downstream boiler structure and boiler performance.
- o) Increasing the maximum furnace pressure of Unit #1 to 19.9" as per Unit #2 operation will account for 7.2 MW of additional unit output.

3.1.2 Recommendations

- a) Reduce the pressure drop across the air heaters and/or economizers by cleaning and/or replacement of heating surfaces. Prioritize this work as follows:
 - 1) Unit # 1 air heater
 - 2) Unit #2 Economizer
 - 3) Unit #2 Air Heater
 - 4) Unit #1 Economizer
- b) If economizer and boiler surfaces cannot be cleaned by 'conventional' methods investigate alternative methods such as explosive or acoustic shock-blasting
- c) Ensure that the steam supply to economizers and air heater sootblowers is dry
- d) Determine if the current furnace pressure alarm/trip setpoints can be increased. (By original boiler supplier)
- e) Inspect the reheaters to determine the cause of low reheater heat transfer performance.
- f) Use burner tilts within manufacturers recommended range as required to increase hot reheat temperatures
- g) Consider turbine generator condenser upgrades which would improve heat rate.
- h) Consider increasing the maximum furnace operating pressure of Unit #1 to 19.9" wg
- i) Consider increasing the furnace pressure alarm pressures.

3.2 UNIT #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 17 of 90

Babcock & Wilcox PGG Canada	
B&W/ Ref. 312C	

3.2.1 Conclusions

- a) The current maximum achievable load Unit #3 is limited by the capacity of the FD fans due to the combination of the following factors:
 - The FD fans capacity are currently not operated at their maximum capacity
 - ii. Air heater leakage rates are up to 3 times higher than design
 - iii. Air heater pressure drops are 3 to 4 times higher than design
 - iv. Unit heat rate approximately is approximately 10% higher than design due to lower than design boiler efficiency and higher than design Turbine Generator Heat Rate
 - v. Operating excess air to burners approximately 2% higher than design
- b) If the existing FD fan capacity was unrestricted, the full 150 MW unit output could have been attained for the January 4, 2018 operating conditions when maximum load was 128 MW.
- c) Replacing the air heater hot end baskets will restore the unit full load capability of 150 MW if the cold end baskets to be re-used are clean and in good condition.
- d) The combustion air flow requirement of the fuel oil currently utilized at site is very close to design on a lb/btu input basis.
- e) The calculated fuel flows based on unit PI data and the measured fuel flow are both significantly higher than expected confirming that unit efficiency is lower than design. The calculated and measured fuel oil flows are within 3% of each other.
- f) Removal of air heater heating surfaces is not recommended due to the negative effect on combustion efficiency and structural limitations of downstream flues/stack.

3.2.2 Recommendations

- a) Establish if the current operating restrictions placed on the FD fans can be removed.
 - Perform an operating test with increased FD fan VIV position and RPM at high load to determine current operating limitations (duct vibration?)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 18 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

- ii. Inspect the FD fan internals, instrumentation, inlet/outlet ducts and correct any anomalies which may lead to operating problems.
- iii. Perform an FD fan test after inspections, including inlet/outlet pressure measurements and inlet airflow measurements.
- b) Refurbish the air heater seals to reduce leakage and FD fan power consumption.
- c) Clean or replace air heater heating elements which are leading to the high pressure drop and load limitations.
- d) Ensure that the steam supply to economizer and air heater sootblowers is dry.
- e) Consider turbine generator condenser upgrades / repairs which would improve TG heat rate

3.3 Fuel Related Issues (Common Units 1,2,3)

- 3.3.1 Conclusions
 - a) From a combustion and heating value standpoint, the fuel oil currently utilized is very close to the original Unit #3 design fuel.
 - b) Fuel oil Sulphur and Vanadium content have been reduced significantly since 2009.
 - c) Fouling of the Holyrood units leading to reduced maximum load capability has occurred between 2015 and 2018, following the discontinuation of fuel oil MgO injection.
 - d) The unit #3 operating conditions between October 2017 and January 2018 show increasing air heater pressure drop occurs at reduced loads, and when air heater ACET drops below 212 F.
 - e) Atomizing fuel oil temperatures at the burners are currently not sufficient to ensure proper atomization / combustion of the range of fuels currently burned (Up to 200 SFS @ 122 F)

3.3.2 Recommendations

- a) Recommission the fuel oil MgO injection system and inject MgO into the fuel oil supply at a rate of 1 lb. MGO per lb. V2O in fuel oil.
- b) Maintain a minimum air heater ACET of 212 F

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 19 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

- c) Maintain atomizing oil temperatures as follows for fuel oil viscosities up to 200 SFS@122 °F
 - a. Units #1 and #2 230 °F
 - b. Unit #3: 225 °F

4 UNITS #1 and #2

4.1 Unit Description and History

The Unit #1 and #2 boilers were supplied by Combustion Engineering Canada in 1969. The boilers supply main and reheated steam at a design 1000 F to Hitachi steam turbines. Air is supplied by two Forced Draft fans through steam coil air heaters and regenerative air heaters to tilting tangentially fired burners in the furnace. Products of combustion leaving the furnace pass through a parallel flow secondary superheater, followed by a counter flow reheater, primary superheater, and finned tube economizer before entering two Ljungström regenerative air heaters.

The units were uprated to deliver 174.2 MW in 1987. Four rows of primary superheater were removed and tube material upgrades were made to the secondary superheater as part of the uprate. The unit was originally designed to control steam temperatures with the combination of flue gas recirculation and burner tilts. The gas recirculation fans have been removed from service.

Neither unit has been capable of operating at loads above 170 MW in recent years. The most recent time period that operating data was available for 170 MW was February 2015 for Unit #1 and October 2016 for Unit #2. The maximum load achievable is currently limited by maximum furnace pressure which has an alarm setpoint of 20" wg. The units will trip if furnace reaches 25" wg. Operators currently maintain furnace pressure below the 20" wg alarm point.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 20 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

4.2 Basis of Study

This study is based on information provided by NLH as outlined below.

4.2.1 Fuel

NLH supplied a spreadsheet summary of the analysis of fuel oil deliveries to Holyrood between 1997 and 2017. Heating value, density, and trace element composition was included in this spreadsheet. A discussion of the fuel characteristics is included in a following section of this report.

4.2.2 Base Heat Balance Information

The expected original design plant operating information for the uprated unit was supplied by NLH as follows:

- Alstom letter to NF Power "Boiler Predicted Performance Data for Boiler #1 & 2" dated Aug 03, 2000. This document is the predicted boiler performance in the "Uprated" condition
- Turbine heat balance conditions as outlined in document "TIR# 10236-893A, UPRATE" Dated 8/5/88.
- The original Combustion Engineering 'Contract Data Sheet' (Contract 68119) These documents are included in Appendices 8.1 and 8.2 for reference.

4.2.3 Unit Operating Data

B&W requested historical operating data representative of unit operation which was not restricted by furnace pressure and current restricted operating data. In response, 'PI' plant historian data was provided by Newfoundland and Labrador Hydro (NLH) in spreadsheet form for the two units at two time periods as outlined in Table 1.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 21 of 90

Babcock & Wilcox PGG Canada

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Table 1 Units #1 and #2 Operating Data Conditions

	Unit 1		Unit 2		
Date	Jan 18, 2018	Jan 18, 2018 Feb 9, 2015		Feb 2, 2018	
	2016		2016		
Unit Output MW	133	169	170	125	
Operating	Load Limited by Furnace	Not	Not	Load Limited by Furnace	
Condition	Pressure	Restricted	Restricted	Pressure	
	@ 17.9" WG			@ 19.9" WG	

It is not known why furnace pressure was limited to 17.9" wg on Unit #1 in January 2018. On possibility is that unstable furnace pressures may have led operators to reduce load to keep furnace pressure out of alarm.

4.2.4 Unit Physical Arrangement

NLH provided boiler general arrangement drawings defining the boiler heat transfer surface arrangement.

4.2.5 Heat and Mass Balance Calculations

B&W Single Heat and Material Balance Program – P08475 was used to calculate flue gas flow, flue gas analysis, combustion air flow, and boiler efficiency based on the fuel analysis, and the operating steam/water, and the air/gas boundary conditions.

4.2.6 Boiler Surface Heat Transfer Effectiveness Calculations

The boiler convective component heat transfer effectiveness (Kf) calculations were performed using B&W's proprietary convective surface heat transfer program "P140". The inputs to this program are the FEGT, the flue gas flow / composition from P08475, and the boiler tube bank heating surface geometry.

The thermal performance of the boiler heat transfer components (superheater, reheater, and economizer) heating surfaces is characterized by B&W as 'Kf' factors. Kf is

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 22 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

calculated by P140 based on the operating data, (component outlet gas temperature and calculated flue gas flow, steam or water inlet and outlet conditions and flow). The component Kf factor is the ratio of 'test' gas side heat transfer conductance to 'expected' gas side conductance:

$$Kf = Ug_{test} / Ug_{exp}$$

The tube bank geometry and flue gas flow are known. P140 calculates the expected gas side heat transfer conductance Ug_{exp} (Btu/hr/ft^A2/°F) on this basis using the standard Kf. For oil fired units, the expected Kf is 1.0 for superheater, reheater, and economizer surfaces. The overall component heat absorption is calculated from the measured steam or water inlet/outlet conditions (enthalpies) from which a test gas side conductance is determined (Ugtest). For oil firing Kf less than 1.0 indicates the heating surfaces are absorbing less heat than expected due to fouling, gas bypassing, unexpected gas flow patterns, etc.

The flue gas temperatures throughout the boiler are calculated by heat balance starting with the measured temperature at the economizer outlet.

4.2.7 Furnace Heat Transfer Effectiveness Calculations

The actual Furnace Exit Gas Temperature (FEGT) is calculated by heat balance around the convective heating surfaces. The difference in temperature between the calculated FEGT and the FEGT as predicted by Alstom is an indication of relative furnace effectiveness. An actual FEGT higher than the expected FEGT indicates underperforming (dirty) furnace surfaces (or higher than expected burner tilts).

4.2.8 Air Heater Heat Transfer Effectiveness Calculations

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 23 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

B&W relies on air heater vendors calculations to predict thermal performance of regenerative air heaters. Air heater heat transfer effectiveness Kf values are thus calculated based on the ratio of the actual heat transfer to the air heater vendors heat transfer adjusted to the actual operating conditions. The 'base' Kf factor to match air heater vendor predicted performance is set to 1.0 thus a calculated Kf value of less than 1.0 indicates heating surfaces are under performing. For Units #1 and #2 the base performance operating condition was taken from the Alstom August 2000 predicted performance data 'MCR' load case.

4.3 DISCUSSION OF RESULTS – Units #1 and #2

Both Units #1 and #2 are currently limited by the maximum allowable furnace pressure. Furnace pressure is a function of the flow resistance (geometry, cleanliness) of the downstream boiler components and the flue gas flow through these components. Flue gas temperature is also a factor, (higher temperatures = higher resistance at a given mass flow) but this effect is small relative to resistance and flue gas flow and is not considered in this study.

4.3.1 Review of Operating Data

The 'PI' system operating data used in this study analysis is generated by the plant permanent instrumentation. It is adequate for detecting trends but not always accurate for measuring 'bulk flow' parameters such as flue gas and air temperatures in large ducts were temperature stratification is expected. As such, the analysis which is based on plant instruments can be considered accurate from a relative standpoint (i.e. to illustrate trends) only. Evaluation of absolute plant performance requires calibrated instruments and air/gas temperature grids in large flues and ducts.

In general, the most accurate plant instruments are those indicating the conditions of major unit inputs/outputs (i.e. fuel flow, MW output), and the 'terminal point' connections between boiler and turbine cycle (i.e. feedwater flow, steam temperatures and

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 24 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

pressures). Steam flow as indicated by HP turbine pressure is not considered as accurate as feedwater flow thus steam flow was calculated from the measured (*feedwater flow – blowdown flow – Aux steam flow*). Reheat steam flow was calculated based on (*calculated steam flow - HP turbine 'leakages' - #6 feedwater heater steam flow*). The HP turbine leakages were taken from the Hitachi 1988 turbine heat balances, and the #6 feedwater flow is calculated by heat balance around the heater based on operating data.

The heat transfer effectiveness analysis (Kf study) requires steam and water – side enthalpies in and out of each boiler component. For units with superheat attemperators, attemperator water flow and attemperator inlet steam temperature are required to determine the heat absorption of the primary and secondary superheater. The measured attemperator steam outlet temperature is prone to reading low due and is not considered accurate. The Units #1 and #2 attemperator inlet steam temperatures are not available, thus only total superheater surface effectiveness (Kf) can be evaluated.

The effect on calculated Kf values of the above factors can be significant. The accuracy of the calculated Kf values would not be expected to be better than +/- 0.1.

4.3.2 Unit Heat Rate

The resistance (Pressure drop) of boiler components and thus the furnace pressure is proportional to the square of flue gas flow. The required flue gas flow is a function of the required unit MW output, the unit efficiency, the fuel theoretical air flow requirements, and the excess air required for complete combustion. Unit efficiency is the combination of Turbine-Generator (TG) efficiency (Heat Rate) and boiler efficiency. These parameters are shown in Table 2.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 25 of 90

Babcock & Wilcox PGG Canada

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

B&W Ref. 312C

Table 2 Units #1 and #2 Heat Rate Effect on Furnace Pressure

UNIT HEAT RATE EFFECT ON FURNACE PRESSURE							
Design UNIT #1 UNIT #2						Г #2	
Date		Uprate 2000	Feb9, 2015	Jan18, 2018	Oct18,2016	Feb2,2018	
Unit Output	MW	174.2	169.5	132.6	170	125.2	
TG Heat Rate	Btu/kWhr	7982	8541	8540	8156	8377	
Boiler Efficiency	%	90.01* 88.06**	85.1	86.51	85.14	86.07	
Unit Heat Rate	Btu/kWhr	9053	10037	9871	9579	9733	
Fuel Theoretical Air	Lb/10,000 btu	6.865	7.407	7.407	7.407	7.407	
Excess Air	%	5	5.4	8.1	3.6	7.3	

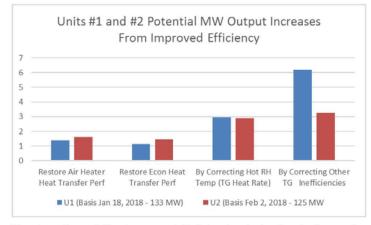
*Design boiler efficiency per Alstom data based on 18,600 btu/lb fuel, steam coil and oil heating steam provided by external supply.

**Efficiency based on 18,450 Btu/lb fuel, steam coil and oil heating steam provided by unit (For direct comparison to B&W calculations – this study)

Significant observations from Table 2:

- The TG heat rates are both higher than design.
 - Unit #1 approximately 7% higher
 - Unit #2 approximately 2-5% higher
- Boiler efficiency is approximately 4% lower than design with heat credits (aux steam from 'outside'), approximately 2% lower than design without heat credits.
- The theoretical combustion air used by Alstom is inconsistent with the fuel analysis. The airflows reported by Alstom in the updated expected performance are not consistent with the combustion airflow required for heavy fuel oil. Per the Alstom 2000 uprate letter data sheet, the MCR theoretical airflow used was 6.73 lb air per 10,000 btu input i.e. (air heater outlet airflow / excess air) / (fuel flow * 18,600 Btu/lb) / 10,000. Heavy fuel oils typically require theoretical combustion air 7.4 to 7.6 lb. per 10,000 Btu input. My calculations are based on a theoretical air requirement of 7.35 lb per 10,000 Btu thus my

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations


Page 26 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

calculated airflows are higher than the Alstom airflows. This additional airflow contributes to higher furnace pressure.

Figure 3 illustrates the MW gains that would be expected for a fixed firing rate if the original design T-G heat rate and boiler efficiency were restored (ref the 2018 operating data)

Figure 4 Units #1 and #2 Potential MW Output Increases from Improved Efficiency

A significant portion of the increased T-G heat rate is due to lower than design hot reheat steam temperatures. Unit #2 was operating at 898 F at the turbine in February 2018 leading to a T-G heat rate increase of approximately 1.5%. The reheaters on Units #1 and 2 should be inspected to identify the cause of the performance shortfall.

The net effect of the increased unit heat rate, the higher theoretical air, and change in excess air is an increase in unit flue gas flow for a given unit MVV output. The increased flue gas flows by themselves are responsible for a significant increase in furnace pressure (reference original design draft losses). The MCR expected furnace pressure

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 27 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

per the Alstom data is 11.3" wg @ 174.2 MW. The increased flue gas flow associated with increased unit heat rates alone increases expected furnace pressure to 13.9" wg for Unit #1 and 12.7" wg for Unit #2.

4.3.3 Fuel Oil Flow

The measured and calculated fuel oil flow in relation to expected oil flow provide an indication of unit heat rate. Table 3 illustrates these quantities for the two units and test times. The Expected / Calculated Oil Flows are consistently above 1.0, which is an indication of higher than design unit heat rate.

Table 3 Fuel Oil Flow Calculated/Expected Units #1 and #2

Fuel Oil Flow Calculated/Expected Units #1 and #2							
Unit			1		2		
Date		Feb 9 2015	Jan 18 2018	Oct 18, 2016	Feb 2, 2018		
Unit Output	MW	170	133	170	125		
Expected Oil Flow (18,450 btu/lb HHV, HR and Blr Efficiency)	Lbs/hr	82176	64175	82383	60487		
Calculated Oil Flow	Lbs/hr	92392	71110	88436	66170		
Calculated/Expected Oil Flow	-	1.12	1.11	1.07	1.09		
Plant Measured Oil Flow	Lbs/hr	90628	68157	90466	65602		
Oil HHV Btu/lb 17,193 - 18,702 (2015-2017 Deliveries)							

4.3.4 Restore Unit Output by Reducing Flue Gas Pressure Drops

Furnace pressure is driven by the pressure drops of the 'downstream' boiler components. These are the superheater/reheater, economizer, air heater, flues to stack. The predicted and actual pressure drops (i.e. the furnace pressure) for Units #1 and #2 are illustrated in Figures 4 and 5.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 28 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

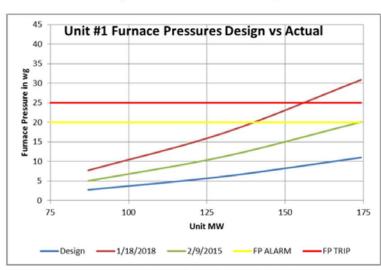
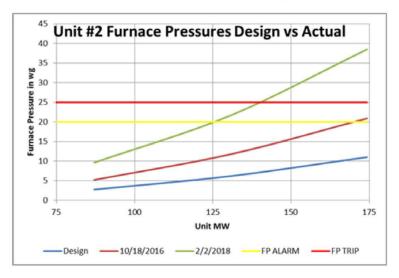



Figure 5 Unit #1 Furnace Pressure Design Vs Actual

Figure 6 Unit #2 Furnace Pressure Design Vs Actual

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 29 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

The original pressure drops were almost doubled at the times when full load was nearly (170 MW) achieved in the 2015/2016 data with furnace pressures approaching the 20" wg alarm. Between that time and 2018, pressure drops increased even further, predominantly due to increases in economizer and regenerative air heater pressure drops. As these pressure drops increased, unit load was restricted in step. It is not known if the pressure drop increases were gradual or associated with particular operating scenarios. A review of all operating data between 2015-2016 and current would be required to reveal trends.

The predicted, 2015/2016, and current flue gas pressure drops by boiler component are shown in Figures 6 and 7. Pressure drops were prorated from actual operating conditions to 174.2 MW for illustration. The 174.2 MW output is not currently achievable on either unit with the current furnace pressure constraint. For Unit #1, the air heater is the largest contributor to current total pressure drop. For Unit #2, the economizer is currently the largest pressure drop contributor.

The superheater and reheater pressure drops are also significantly higher than design, indicating fouling in these components and / or tube misalignment. The magnitude of this contribution to furnace pressure is small relative to the air heater and economizer. Hot reheat temperatures are currently much lower than design, which combined with the high pressure drop suggests that the cleanliness of these surfaces is also poor.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 30 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Figure 7 Unit #1 Pressure Drops Prorated to 174.2 MW

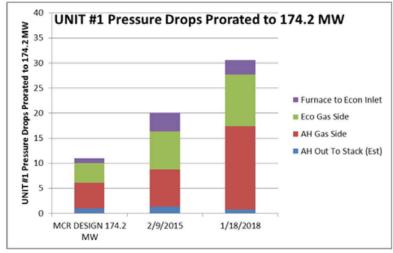
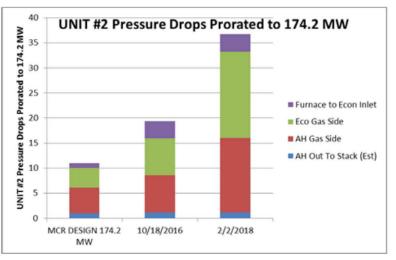



Figure 8 Unit #2 Pressure Drops Prorated to 174.2 MW

Figures 8 and 9 illustrate the current load limitations of Units 1 and 2 and the expected increases in load capability if:

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 31 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

- The air heater pressure drops can be restored to original design
- The economizer pressure drops can be restored to original design
- Both air heater and economizer pressure drops are restored to original design
- Both air heater and economizer pressure drops and boiler efficiency restored to original design. (Reduced stack temperature will be associated with cleaner surfaces)

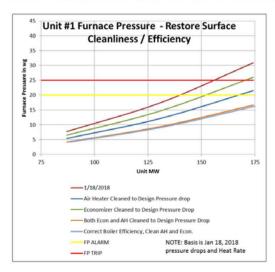


Figure 9 Unit #1 Furnace Pressure - Restore Surface Cleanliness/Efficiency

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 32 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

45 Unit #2 Furnace Pressure - Restore Surface 40 **Cleanliness / Efficiency** 35 **Entranse Fressure in wg** 30 25 20 15 10 5 0 100 150 175 75 125 Unit MW - 2/2/2018 Air Heater Cleaned to Design Pressure drop -Economizer Cleaned to Design Pressure Drop - Both Econ and AH Cleaned to Design Pressure Drop - Correct Boiler Efficiency, Clean AH and Econ. FP ALARM NOTE: Basis is Feb 2, 2018 pressure drops and Heat Rate FP TRIP

Figure 10 Unit #2 Furnace Pressure - Restore Surface Cleanliness / Efficiency

The potential increases in maximum load as limited by the furnace alarm pressure are shown in the Table 4:

MAXIMUM LOAD AS LIMITED BY FURNACE PRESSURE – RESTORE A/H AND/OF ECON PRESS. DROP							
		Un	it #1	Unit #2			
		(Per Jan 18, 2018	Data @ 133 MW)	(Per Feb 2, 2018 Data @ 125			
				MW)			
Action	Units	Maximum Load	Load Increase	Max Load	Load Increase		
Increase Maximum Furnace	MW	140	+7	-	-		
Pressure to 19.9" (UNIT #1)							
Restore Design Air Heater	MW	161	+28	141	+16		
Pressure Drop							
Restore Design Economizer	MW	146	+20	151	+26		
Pressure Drop							
Restore Both Economizer and	MW	175	+53	175	56		
Air Heater (Max 175 MW)			(Inc. FP Increase)				

Table 4 Maximum Load As Limited by Furnace Pressure- Restore A/H and/or Econ Pressure Drop

Table 4 shows that the largest gain in MW output for Unit #1 is restoring the air heater pressure drop. For unit #2, the biggest gain is in restoring the economizer pressure

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 33 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

drop. If both economizer and air heater pressure drops are restored on both units, they will not be load limited below 174.2 MW by furnace pressure. From the charts above, it can be seen that the gains in unit MW output from largest to smallest are:

- 1) The Unit #1 Air Heater
- 2) The Unit #2 Economizer
- 3) The Unit #2 Air Heater
- 4) The Unit #1 Economizer

If cleaning air heater surfaces is not possible, replacement of heating surfaces which are fouled would restore air heater pressure drop.

Replacement of economizer surface is likely not economically viable if conventional cleaning methods are ineffective. Other methods of cleaning such as the use of explosives or acoustic shock methods (Shock pulse) should be considered.

Improvements in surface cleanliness will increase boiler efficiency, slightly increasing maximum load (if limited by furnace pressure) and reducing fuel oil consumption. There will also be a reduction in FD fan power consumption. These effects were not calculated as part of the current study.

4.3.5 Other Considerations to Restore Unit Load

Improvements in TG heat rate through modifications / repairs to the turbine-generatorcondenser would increase unit output when unit input is limited by furnace pressure. The effect of this type of modifications has not been considered in this study.

It may be possible to increase the furnace pressure alarm and trip settings. This would increase the maximum achievable load. The original boiler structural design calculations would need to be reviewed. This review would need to be done by the original boiler designer.

Once cleaned (or heating surfaces replaced), methods of preventing future fouling of air heater and economizer surfaces should be employed. For the air heater, a sufficiently

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 34 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

high Average Cold End Temperature (ACET) must be maintained at all loads and during startups. Air heater pressure drop trends from Unit #3 (See Unit #3 section of this report) suggest a minimum ACET of 212 F should be maintained. For the economizer, temperatures are high enough during operation to prevent fouling. Fouling may occur during start ups when feedwater temperatures and/or flows are low.

Sootblowing steam must be dry to prevent the formation of sticky oil-ash deposits. This is particularly important during low loads and startups when combustion efficiency is at its lowest.

Unit #1 could deliver an additional 7 MW of output if furnace pressure is increased to the 19.9" wg level per the Unit #2 Feb, 2018 data. While it is unlikely that the furnace trip point of 25" wg may be increased, it may be possible to increase the alarm point from the current 20" wg dependent on the stability of furnace pressure during high load operation.

4.3.6 Heating Surface Effectiveness (Kf Study)

B&W performance program P140 was used to calculate the convective surface Kf values of the boiler components for the operating periods which were considered. FEGT is also calculated by P140 based on heat balance around the boiler components. The air heater Kf values were determined with reference (Kf = 1.0) to the Alstom predicted performance data (2000). The expected and actual Kf's are shown in Table 5. The expected Kf for bare tube surfaces is 1.0. The expected Kf for finned tube economizer surface is 1.2.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 35 of 90

Babcock & Wilcox PGG Canada

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Kf and FEGT Summary, Units #1 and #2								
Unit #	1&2	1		2				
Date	Expected	Feb, 2015	Jan, 2018	Oct, 2016	Feb, 2018			
Unit Load	174.2	170	133	170	125			
Air Heater Kf	1.0	0.66	0.7	0.53	0.67			
Economizer Kf	1.2	0.67	0.74	0.65	0.64			
Superheater Kf	1.0	0.92	0.88	0.93	0.78			
(Avg Prim+Sec)								
Reheater Kf	1.0	0.88	0.67	0.72	0.72			
FEGT(°F)	2589	2577	2438	2577	2408			
(Expected/Actual)		2590	2439	2669	2396			
Burner Tilt (Deg)	+10	+10.5	+14.8	+10.5	+15.7			
(Expected/Actual)		-1.4	4.7	-6.3	+0.2			
Hot Reheat Temp	1000	966	901	947	898			
(Deg F)								

Table 5 Kf and FEGT Summary, Units #1 and #2

Table 5 illustrates that Kf factors in all cases are less than expected, thus all surfaces downstream of the furnace are underperforming from a heat transfer standpoint. The Unit #1 reheater and the Unit #2 superheater Kf's have dropped significantly between 2015/16 and current operation. As expected from the observed greater than expected draft losses, the economizer and air heater surfaces have the lowest Kf's. On the other hand, there is not a significant difference between the 2015/16 Kf's and current Kf's of the economizer and air heater when draft losses were seen to increase. The cause of this apparent anomaly is not clear. It is possible that some sections of these components are currently cleaner than they were, but blockages in other sections (i.e. center of bank where washing has not penetrated) have increased.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 36 of 90

Babcock & Wilcox PGG Canada	Newfoundland and Labrador Hydro
B&W Ref. 312C	Holyrood Units #1,2,3

The reheater performance is significantly lower than expected. This has the effect of both increasing stack gas temperature (reducing boiler efficiency) and increasing heat rate.

Burner tilts are not being utilized to maintain design hot reheat temperatures. Positive burner tilts between 10 and 15 degrees would be expected; actual burner tilts are in the +/- 5 degree range. The calculated FEGTs are generally higher than expected, even with the lower than expected burner tilts, suggesting that the furnace surfaces are also underperforming.

In general, the most effective means of reducing stack temperature to improve boiler efficiency is by improving the performance of boiler components in the low gas temperature regions i.e. the air heater and then the economizer. Table 6 illustrates the effect of a 10 F reduction in gas temperature on stack temperature and boiler efficiency.

Stack Gas Temperature Change for Change in Upstream Gas Temperature						
Component /	Change in Component Gas	Change in Component Gas Change in Stack Change in Boiler				
Location	Outlet Temperature (F)	Temperature (F)	Efficiency (%)			
Air Heater Gas	10	10	+0.2			
Outlet						
Economizer Gas	10	4	+0.08			
Outlet						
Primary SH Gas	10	0.8	+0.016			
Outlet						

Table 6 Stack Temperature Change for Change in Upstream Gas Temperature

Improvements of boiler heat transfer performance to improve unit efficiency should be prioritized as follows:

- 1) Air heater (Increased Boiler Efficiency)
- 2) Economizer (Increased Boiler Efficiency)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 37 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

- 3) Reheater (Increased Boiler Efficiency and Reduced T-G Heat Rate)
- 4) Superheater

Note that improvements in reheater heat transfer performance will have three positive effects on unit efficiency:

- A small improvement in on boiler efficiency due to lower stack temperature
- A reduction in T-G heat rate by means of higher hot reheat temperature
- Lowering of burner tilts leading to lower superheat spray quantity

If burner tilts are modulating to control hot reheat steam temperature, improvements in furnace surface performance will have little to no effect on unit efficiency. Burner tilts respond to the required hot reheat steam temperature and adjust for reduced furnace cleanliness until the maximum negative tilt (Normally -30 Degrees) is approached. Excessively dirty furnace surface can lead to slag falls and this must be monitored visually and controlled accordingly.

5 UNIT #3

5.1 Unit Description and History

Holyrood Unit #3 is a B&W 'EI Paso' type boiler. The unit is coupled to a 150 MW Hitachi steam turbine. The boiler delivers a nominal 1000/1000 F steam to the HP/IP turbine. Steam temperature is controlled by biasing the firing rate between the three levels of burners. Air is supplied by two "Sheldons" FD fans. Air flows from the two fans to steam coil air heaters for ACET control and then into two "Howdens" Ljungström type regenerative air heaters. Oil is burned in nine circular oil burners arranged in three levels. Flue gas exits the furnace to the reheater and secondary superheater, then down through the primary superheater and bare tube economizer before passing through the regenerative air heater to the stack.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 38 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Reheater surface was removed by Alstom in 2001. The intent of this modification is unknown. The most likely reason to would have been to reduce high load reheater sprayflow.

The FD fan VIV's have been limited to approximately 54% and 70% open on the East and West fans respectively due to vibration of the fan inlet ducting.

B&W are not aware of any other modifications to the unit which would affect the results of this study

5.2 Basis of Study

5.2.1 Fuel

The fuel oil analysis as used in the original Unit #3 design was used (Ref discussion in following sections of this report).

5.2.2 Base Heat Balance Information

Baseline predicted unit performance was taken from the original boiler design B&W boiler Performance Data (PD) sheet dated 9/5/78 and the original heat balance diagram sheet NLH Drawing AO-1403-200-M001 Rev 2. These documents are included in Appendices 8.3 and 8.4 for reference.

5.2.3 Unit Operating Data

B&W requested unit operating data representative of operation for a time period when the unit was capable of full load and another when unit was not capable of full load. NLH subsequently provided plant 'PI' data from Oct 22, 2017 with the unit at 150 MW and January 4, 2018 when the maximum attainable load was 128 MW.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 39 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Due to the relatively short time period over which maximum attainable unit load was reduced, B&W requested hourly operating data for the time period between Oct 22, 2017 and January 4, 2018 in order to understand the conditions that were leading to maximum load reductions.

5.2.4 Unit Physical Arrangement

The original B&W boiler arrangement drawings of the boiler physical arrangement were used as basis of the calculated performance. The performance model (P140) was adjusted to reflect the 2001 reheater surface removal.

5.2.5 Heat and Mass Balance Calculations

B&W Single Heat and Material Balance Program – P08475 was used to calculate flue gas flow, flue gas analysis, combustion air flow, furnace heat absorption, Furnace Exit Gas Temperature (FEGT), and boiler efficiency based on the fuel analysis, steam/water, air/gas boundary conditions, and furnace heating surface arrangement.

5.2.6 Boiler Surface Heat Transfer Calculations

Convective surface heat transfer was calculated using B&W program "P140". The methodology is described in the above discussion for Units #1 and #2.

5.2.7 Furnace Heat Transfer Effectiveness Calculations

As described above, for Units #1 and #2, furnace performance is quantified by the difference between the actual and predicted FEGT. For the B&W unit, the predicted FEGT is calculated by P8475 per B&W standard methods. FEGT higher than predicted indicates underperforming furnace surfaces and/or large amounts of burner fuel input biasing.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 40 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

5.2.8 Air Heater Heat Transfer Effectiveness Calculations

Air heater heat transfer effectiveness is calculated as per the above discussion for Units #1 and #2.

5.3 DISCUSSION OF RESULTS

5.3.1 Review of Operating Data

A discussion of the limitations of PI operating data vs test data and the effect on calculations is included in the above Units #1 and #2 analysis.

Notable omissions and anomalies in the data received were:

- The FD fan inlet/outlet pressures are not available
 - o Assumptions were required to estimate FD fan pressure rise
- The #6 Feedwater heater water inlet temperature reading is not valid.
 - Assumptions were required to calculate reheater steam flow
- The PI reported superheater spraywater flow was implausible
 - Assumptions were required in Stage 2 (Kf) analysis

5.3.2 Turbine Generator Heat Rate

The original design and the current turbine heat rates for the Oct 22 and Jan 4 data are shown in Table 7.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 41 of 90

Babcock & Wilcox PGG Canada

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

B&W Ref. 312C

Table 7 Turbine - Generator Heat Rate Design vs Current Unit #3 TURBINE - GENERATOR HEAT RATE DESIGN vs CURRENT Oct 22, Jan 4, Design (Ref AG 1403-200-M001 Rev2 2017 2018 Gross Output MW 149.2 128.2 150 **Turbine Heat Rate Expected** Btu/kwhr 7621 7623 7665 Turbine Heat Rate (Adjusted for Btu/kwhr 7597 7720 off design boiler boundary Conditions i.e. hot RH Temp) Turbine Heat Rate Actual Btu/kwhr 8188 8260 Required Boiler Output To Btu/hr/1 1143 1222 1059 0^6 Turbine Increase in Turbine Heat Rate 7.4 7.8 %

The current heat rates are significantly higher than design, increasing the required boiler output per MW generated.

Note that the boiler heat output also includes other loads such as Aux steam to other units/building heat, etc. and output to blowdown. These outputs were not included in the turbine heat rate calculations. The boiler output calculations assumed that:

- No aux steam flowed into or out of the Unit 3 boiler envelope
- The aux steam extracted from the boiler was used within the boiler envelope

(Predominantly steam coil air heaters, fuel atomization and fuel oil heating)

- No sootblowing steam consumption
- Boiler blowdown flow 1% of main steam flow

Steam flows for calculation of turbine heat input were determined as follows:

- HP Steam flow to turbine = (Feed Water Flow) – (Blowdown Flow) – (Aux Steamflow)

- Reheater Flow = (HP Steam flow) – (Design HP Turbine Leakages) - (#6 Heater Steam Extraction Steam Flow calc. by heat balance)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 42 of 90

Babcock & Wilcox PGG Canada

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

HP steam flow calculated from feed water flow is generally more accurate than the commonly used steam flow inferred from HP turbine inlet pressure, particularly for older turbines.

5.3.3 Deviations from Design Turbine – Boiler Boundary Conditions

The operating turbine heat rates illustrated above are affected by deviations in boiler operating conditions from design. These conditions are:

- Main steam temperature / pressure
- Hot reheat temperature
- Superheater and reheater sprayflows
- Boiler blowdown and aux steam flows
- Reheater pressure drop

The magnitude of these corrections is relatively small. The corrections are indicated in Table 8 were made using heat rate correction curves for a Hitachi turbine of similar vintage, size, and design conditions.

HEAT RATE CORRECTIONS							
DEVIATIONS FROM DESIGN TURBINE – BOILER BOUNDARY CONDITIONS EFFECT							
	Oct 22, 2017 Jan 4, 2018						
Unit Output	MW	150	14	9.2	128.2		
		Design	Measured	Heat Rate	Measured	Heat Rate	
				Correction		Correction	
Main Steam Temperature	F	1000	1000	1.0000	1000.4	0.9999	
Main Steam Pressure	Psig	1800	1799	1.0000	1798	1.0000	
Hot Reheat Temperature	F	1000	1005.5	0.9992	941	1.0089	
Superheat Spray flow	Lb/hr	0	48000*	1.0022	48000*	1.0026	
Reheat Spray flow	Lb/hr	0	2140	1.0011	2196	1.0013	
Boiler Blowdown & Aux Steam	Lb/hr	0	16500	0.9942	12700	0.9945	
Flows							
Overall Turbine Heat Rate	-	1.0000	-	0.99660	-	1.0071	
Correction Due to Deviations in	(%)	(0)		-0.3%		0.7%	
Boiler Boundary Conditions							
(Positive=Increased HR)							
*Estimated (Plant superheater	spray flow	v measure	ment is imp	olausible)			

Table 8 Heat Rate Corrections Unit #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study - Unit Capacity Limitations

Page 43 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

A further correction for reheater pressure drop is available but was not applied since total reheat pressure drop (including piping) was not measured. This correction is normally very small. The correction for Condenser vacuum was also not applied. This correction can be substantial, but was not considered as it is outside of the scope of this study.

The small boundary condition corrections here indicate that the majority of the increased T-G heat rate is due to T-G inefficiencies. In general aging steam turbines experience heat rate increases due to high condenser pressure, higher than design turbine valve and gland leakages, depositions on and wear of turbine blades. B&W has seen heat rate increases similar to those indicated in the above table on T-G units of similar vintage and size.

5.3.4 Fuel Oil Flow

Although inaccuracies exist in measurements of the fuel oil flow to the unit and there are variations in fuel heating value, fuel oil flow relative to unit MW load is an indicator of unit heat rate. Table 9 shows the expected, calculated, and measured fuel oil flows for the Oct 22 and Jan 4 data. Calculated oil flows are based on 18450 Btu/Lb. The calculated oil flows are within 3% of the measured oil flows.

Table 9 Fuel Oil Flow Calculated/Expected Unit #3

Unit Output	MW	149.2	128.2	
		(Oct 22, 2017)	(Jan4, 2018)	
Expected Oil Flow	Lbs/hr	69,579,	60,114	
(Design HHV, HR and Blr Efficiency)				
Calculated Oil Flow	Lbs/hr	77,367	67,138	
Calculated/Expected Oil Flow	~	1.11	1.12	
Plant Measured Oil Flow	Lbs/hr	79,276	67,199	
Oil HHV	Btu/lb	18,278-18,472 (2017 Deliveries		

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 44 of 90

Babcock &	Wilcox	PGG	Canada

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

5.3.5 Boiler Efficiency and Air Heater Leakage

Boiler Efficiency is predominantly driven by excess air and the difference between inlet air temperature and outlet flue gas temperature (Corrected for no a/h leakage i.e. undiluted). Other factors such as atomizing steam flow, radiation loss, and unburned carbon loss are small for oil fired units. The key parameters are illustrated in Table 10 with reference to the original design conditions.

BOILER	EFFICIENCY	AND AIR HEATER LEAKAGE		
		Design (B&W PD Sheet	Oct 22,	Jan 4,
		C/7391, MCR Load)	2017	2018
Excess air To Burners	%	3	5	7
Air Inlet Temperature	F	80	45	61
Gas Temperature Entering A/H	F	662	747	737
Stack Gas Temperature (Diluted)	F	280	318	324
Air Heater Leakage (% of Inlet Gas Flow)	%	9.5	22.2	27.5
Stack Gas Temperature (Corrected for No Leakage)	F	297	364	376
Boiler Efficiency	%	88.59	86.45	86.46
Air Heater Leakage Flow	Lb/hr	103,000	267,000	305,000

Table 10 Boiler Efficiency and Air Heater Leakage (Unit #3)

The boiler efficiency is approximately 2% lower than design, mainly due to the higher than design corrected air heater outlet temperature and the lower than design air inlet temperature. The reduction in efficiency combined with the higher than design excess air and much higher than design air heater leakage increases the required FD fan air flows significantly. These increases compound with the additional air flow required by the increased T-G heat rate discussed above.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 45 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

5.3.6 FD Fan Duty Requirements – Design vs Current

5.3.6.1 Required Air Flows

The required boiler airflows to achieve a 150 MW unit output at current operating conditions are summarized in Table 11. The required air flow leaving the air heater is calculated based on TG heat rate, boiler efficiency, and excess air from the Oct 22 (149.2 MW) site data. The required air flow entering the air heater was calculated based on both the Oct 22 and Jan 4 data to illustrate the effect of the increased air heater leakage resulting from the higher Jan 4 air heater air/gas side differential pressure.

FD FAN AIRFLOW REQUIREMENTS - DESIGN vs CURRENT OPERATION (150 MW)				
		Design (MCR, 150 MW)	Oct 22, 2017	Jan 4, 2018 (Additional AH Leakage)
Original Design Airflow Leaving AH	Lb/hr	1,029,700	-	-
Additional AirFlow due to TG Heat Rate Increases	%	-	7.4	
Additional AirFlow due to Boiler Efficiency Loss	%	-	2.5	
Additional AirFlow due to higher Excess Air	%	-	2.0	
Total Additional AirFlow to Burners (Entering AHs)	%	-	12.3	
Required Air Flow Leaving Air Heaters	Lb/hr	1,029,700	1,156,000	
Additional Flow Air heater leakage (% Air Leaving)	%	10	23.1	26.4
Required AirFLow Entering Air Heaters	Lb/hr	1,132,700	1,423,000	1,461,000
Required Airflow Entering Air Heaters / Fan	Lb/hr/fan		715,500	753,000
% Increase in FD Fan Outlet Airflow vs 150 MW Design	%		25.6	29.0

Table 11 FD Fan Airflow Requirements - Design vs Current (Unit #3)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 46 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

5.3.6.2 Required FD Fan Pressure Rise

The boiler air and flue gas side pressure drops during Oct 22 and Jan 4 operation vs the design pressure drops are summarized in Table 12. Pressure drops are higher than design due to the combination of increased required air and flue gas flow along with increased resistance. Due to the assumptions made regarding air heater and steam coil air heater air-side pressure drop, the pressure drop summary should be considered 'approximate only' until actual FD fan pressure rises can be confirmed.

The pressure drop in the FD fan inlet ducts is not measured thus it has been assumed unchanged from original design. The FD fan outlet pressures are also not available. This was estimated by adding the Ljungström air heater air-side pressure drop (proration of the design pressure drop by the ratio of measured/design gas side pressure drop), and an estimated steam coil air heater pressure drop (estimated at two times a 'typical' steam coil since the steam coils are reportedly fouled/damaged).

AIR AND GAS SID	PRESSURE D	Rops – Design VS of	PERATING	
		Design 150 MW	Oct 22, 2017	Jan 4, 2018 (Prorate to
		130 1000	(149.2 MW)	150 MW)
Airflow To burners	Lb/hr	1,029,700	1,156,000	1,156,000
Air Heater Leakage	Lb/hr	103,000	267,000	305,000
Airflow Leaving FD Fans (Inc AH Leakage)	Lb/hr	1,132,700	1,423,000	1,461,000
Draft loss Burners	in Wg	4.9	7.2	9.9
Draft loss Furn and CP	in Wg	6.3	9.2	6.6
Draft Loss AH Gas Side	in Wg	3.1	8.6	11.4
Draft Loss AH Air Side (Prorate from Gas Side)	in Wg	2.4	6.6	8.8
Draft Loss SCAH (Est)	in Wg	1.7	6.4	6.8
Ducts Draft loss (Prorate from Design)	in Wg	5.4	6.8	6.8
Flues Draft Loss (Prorate from Design)	in Wg	2.1	2.6	2.6
Total Draft Losses	in Wg	25.7	47.3	52.8

Table 12 Fd Fan Pressure Rise - Design Vs Operating Unit #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study - Unit Capacity Limitations

Page 47 of 90

The largest contributor to additional fan pressure rise duty is the additional flow associated with the combination of increased turbine heat rate, higher than design excess air, and reduced boiler efficiency. The additional pressure drop in the regenerative air heaters and the steam coil air heater are the next most significant contributor to additional fan loading.

5.3.7 FD Fan Capacity Discussion

The combination of turbine heat rate increases, boiler efficiency reduction, air heater leakage, and higher than design combustion system excess air increase the required airflows as discussed above. The increased flows inherently increase the system pressure drop by approximately 26% relative to the original design. Pressure drop increases of a similar magnitude are observed due to changes in flow path resistance, such as dampers throttled, burner air register settings, boiler convection pass and air heater fouling. The expected performance for each fan as operating on Jan 4, 2018 is illustrated in Figures 10 and 11. The curves are based on the original Sheldons Eng. fan curve (Ref Appendix 8.5), corrected for inlet air density and fan RPM.

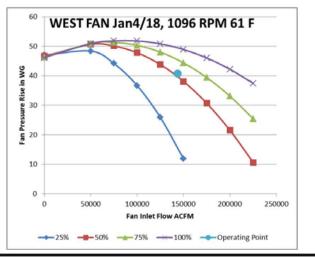


Figure 11 West FD Fan Jan 4/18 Unit #3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 48 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

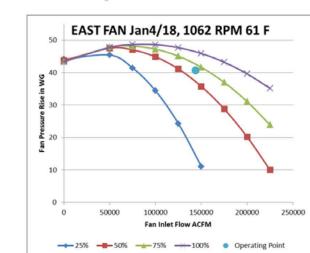
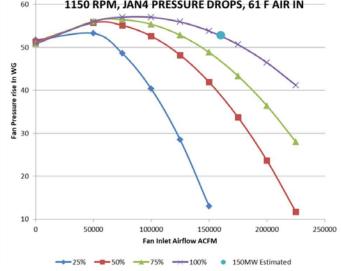


Figure 12 East Fan Jan 4/18 Unit #3


Under the Jan. 4, 2018 operating conditions, the FD fans would have been capable of delivering the required air flow to the unit if operated at the rated 1150 RPM and 100 % VIV opening. On that day, the fan speed was limited to approximately 1080 RPM and the VIV's were in the 54%/70% east/west position with the unit at 128 MW. The required fan duty to make 150 MW per the Jan 4 data is illustrated in Figure 12. This curve is based on the original Sheldons fan curve. A correction was required for lower than design inlet air temperature (Sheldons Fan Curve temperature basis was 105 F).

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 49 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Figure 13 FD Fans Estimated Operating Point, 150 MW, Jan 4/18 Unit #3
FD FANS ESTIMATED OPERATING POINT @ 150 MW.
1150 RPM, JAN4 PRESSURE DROPS, 61 F AIR IN

5.3.8 Air Heater 'ARVOS' basket replacement

A proposal from ARVOS for replacement air heater hot end heating elements was reviewed from the standpoint of the restoration of maximum boiler load capability and FD fan capacity. The expected performance as received from ARVOS for the new elements if installed with the existing cold end elements (assumed to be in 'as new' condition from a heat transfer / pressure drop standpoint) is included in Appendix 8.6. Table 13 outlines the required fan performance with the new heating elements installed. The existing FD fans will easily deliver sufficient airflow for 150 MW operation at approximately 960 RPM and 60-65 % average VIV opening.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 50 of 90

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

					New Hot End	New Hot End
			10/22/2017	1/4/2018	Baskets and Seals	Baskets, Old Seals
			150 MW	128 MW	150 MW	150 MW
Flows MI	b/hr (Oct Data U	Init @ 150 Mw)				
	Air Entering A	н	1,390,100	1,312,800	1,279,870	1,354,177
	Leakage Air		267,000	305,000	156,770	231,077
	Air Leaving A	ir Heater	1,123,100	1,007,800	1,123,100	1,123,100
Tempera	tures F					
	Air Entering F	D Fan	45	61	45	45
	Air Entering A	Air Heater	99	128	128	128
Pressures	s In WG					
	FD Fan Press	ure Rise	45.2	40.7	34.4	34.9
	AH Outlet Ple	enum	27.4	26.9	20.9	20.9
	Air Heater Ai	Side Pressure Drop	6.6	7.1	1.9	1.9
	Air Heater Ho	t End Differential	22.4	18.0	22.4	22.4
	Air Heater Ga	s Side Differential	8.6	9.2	3.2	3.2
Fan Perfo	ormance					
	FD Fan Volun	ne Flow ACFM/Fan	147,816	143,842	135,991	143,886
	FD Fan RPM		1018	1062	960	960
	FD Fan VIV %		54/70	54/70	60.0	65.0
	Horsepower/	Fan (Predicted)	867	940	727	772

Table 13 Arvos Replacement Hot End Heating Elements Performance

Note the following:

- Combustion air flows requirements are based on boiler operating data Oct 22, 2017 @ 150 MW
 - No adjustments were made for improved efficiency (Which should be achieved with AH basket replacement). This will result in a conservative capacity estimate
- Air heater leakage calculated two ways to assist in evaluation value in new seals
 - Without new seals, air heater leakage adjusted from Oct 22, 2017 calculated leakage for reduced differential pressures with the new baskets
 - With new seals, air leakage adjusted from ARVOS predicted data based on higher hot end air heater differential pressure
- FD Fan performance is calculated based on 'typical' current operating VIV openings, Fan RPM selected to match required pressure rise

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 51 of 90

Babcock & Wilcox PGG Canada	Ne
B&W Ref. 312C	

- Air Heater Outlet plenum pressure setpoint reduced due to reduced air heater pressure drop
- There is a savings in fan power as shown (estimated) in Table 13.

Figure 13 illustrates the estimated fan operating points @ 960 RPM with the proposed air heater upgrades.

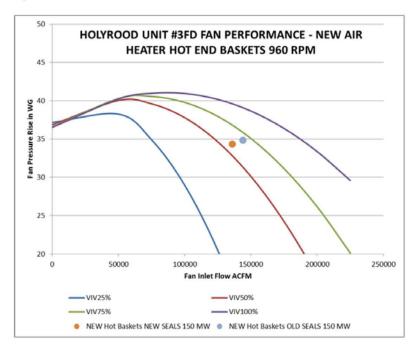


Figure 14 FD Fan Performance - New ARVOS Air Heater Hot End Elements Unit #3

5.4 Heating Surface Effectiveness (Kf Study)

Heating surface effectiveness factors (Kf's) were calculated by B&W program P140. Table 14 summarizes the results.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 52 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

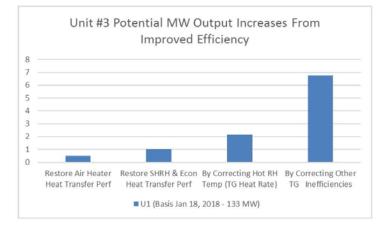
Kfa	Ind FEGT Sum	nmary, Unit #3	
Date	Expected	Oct 22, 2017	Jan 4, 2018
Unit Load	150	150	128
Air Heater Kf	1.0	0.91	0.88
Economizer Kf	1.0	0.91	0.98
Superheater Kf	1.0	0.90	0.75
(Avg Prim+Sec)*			
Reheater Kf	1.0	0.96	0.71
FEGT(°F)	2482	2482	2394
(Expected/Actual)		2528	2476
Main Steam	1000	1000	1000
Temp (Deg F)			
Hot Reheat Temp	1000	1006	941
(Deg F)			

Table 14 Kf and FEGT Summary Unit #3

*Superheater Kf Estimated (Spraywater Flow Not Available)

The Kf analysis shows that all surfaces are underperforming from a heat transfer effectiveness standpoint. The effectiveness of the superheater and reheater surfaces dropped significantly during the Oct 2017 – Jan 2018 time period. The air heater and economizer Kf's, while below expected, did not change significantly during that time period; this is somewhat unexpected for the air heater given the large increase in pressure drop seen during this time. One possible explanation may be that localized depositions are blocking flow in a relatively small portion of the depth of the heating surfaces. Flow patterns may also have changed if the two air heaters are not fouling at the same rate, leading to an air and flow 'shift' between them. This could affect the indication of stack temperature from the plant instrumentation.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations


Page 53 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

As discussed above, the major deficiencies in the Unit #2 performance as they affect efficiency as based on the January 2018 data are the higher than expected Turbine-Generator heat rate and reheat cleanliness / hot reheat temperature. The low heat transfer effectiveness of the superheater and reheater surfaces is not a major factor in terms of boiler efficiency due to the relatively good thermal performance of the air heaters and economizers. The significant reduction in superheater and reheater Kf values should be investigated i.e. the surfaces should be inspected for cleanliness. Increases in sootblowing frequency and/or blowing pressures may be necessary to maintain cleanliness of these surfaces.

Figure 14 illustrates the additional unit output that that would be expected if the boiler and T-G inefficiencies are corrected.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 54 of 90

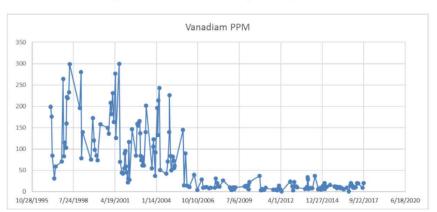
Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

6 FUEL OIL RELATED ISSUES (COMMON UNITS #1,2,3)

Fuel oil is supplied to the three units from common storage tanks. Oil is pumped and heated to the required pressure and temperature for burner atomization by independent pumping / heating sets for each unit.

The fuel oil analysis data in the NLH supplied spreadsheet database was reviewed. From a combustion and heating value standpoint, the fuel analysis in recent years is very close to the Unit #3 original design fuel. Combustion calculations were therefore based on the Unit #3 design fuel. The Sulphur content has been consistently below 1% since early 2009 per Figure 15. The Vanadium (V2O) content dropped significantly in late 2005 and is currently consistently less than 50 ppm per Figure 16. Overall the fuels currently burned are better than 'typical' Bunker fuels with lower than normal levels of both Sulphur and Vanadium.



Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 55 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Figure 17 Fuel Oil Vanadium PPM (1995-2017)

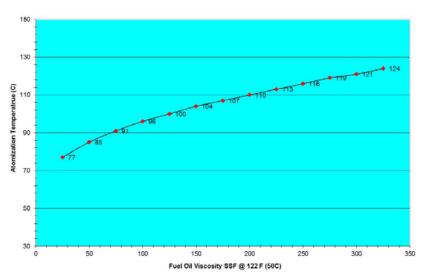
Interactions of Vanadium, SO₂ / SO₃, and unburned carbon in the products of combustion lead to air heater fouling. These deposits can block the flue gas passages on air heater heating surfaces, increasing pressure drop and reducing heat transfer effectiveness. Finned tube economizers may also be affected during start-up and very low load operation. Unburned carbon is the largest component of these deposits and it is typically highest during start-up and low load operation.

Low air heater metal temperature as indicated by the Average Cold End Temperatures (ACET) increase the condensation rate of SO3 on the baskets and increase the tendency for deposits to form. Air heater metal temperatures are also lowest at low loads if sufficient inlet air preheating is not supplied. It is thus imperative that air heater ACET is maintained at all loads and operating conditions.

The regenerative air heaters of all three units and the finned tube economizers of units #1 and #2 are experiencing significantly higher than design pressure drops.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 56 of 90


Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

6.1 Atomizing Temperature

The viscosity of oils currently utilized at Holyrood range between 50 and 189 SFS (@ 122 F). Sufficient fuel oil heating must be supplied to ensure proper atomization and complete combustion.

The required atomizing temperature for Units #1 and #2 atomizers as a function of SFS viscosity is shown in Figure 17 (Ref. Alstom info supplied to B&W by NLH). According to site reports, atomizing temperatures are currently approximately 187 F (86 C)

Figure 18 Atomization Temperature vs Fuel Oil Viscosity Units 1 & 2

Atomization Temperature vs Fuel Oil Viscosity Units 1 & 2

The Unit #3 B&W atomizers are designed for 135 SSU viscosity at the burners. Figures 18 and 19 illustrates the required atomizing temperature as a function of the fuel oil SFS @122 F to achieve the required atomizing viscosity.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 57 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Figure 19 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Celsius)

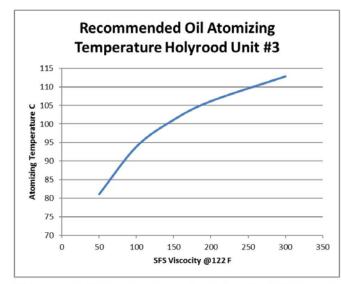
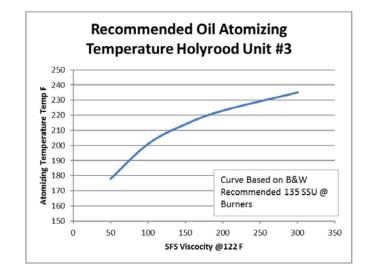



Figure 20 Recommended Oil Atomizing Temperature, Holyrood Unit #3 (Fahrenheit)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 58 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

For Units 1 & 2, an atomizing temperature of 110 C (230 F) is recommended to accommodate fuel oil viscosities up to 200 SFS (@122 F). For Unit #3, an atomizing temperature of 225 F is recommended to ensure the minimum 135 SSU viscosity is maintained.

Low atomizing temperature leads to incomplete combustion and increased unburned carbon in fly ash. This ash combined with SO3 condensate in low temperature regions of the boiler lead to corrosion and fouling.

6.2 Fuel Oil Additives

Fuel oil additives reduce the potential for high temperature corrosion and low temperature fouling due to the fuel oil Vanadium. These issues are linked to the catalysing effect of Vanadium on high temperature tube metal corrosion and on the conversion of SO2 to SO3. MgO added to the fuel stream is effective in reducing these effects. B&W recommends a minimum dosing rate of 1 lb MgO per lb V2O in the fuel oil to reduce the potential for both corrosion and fouling. Figure 20 illustrates this recommended dosing rate per unit MWhr output based on an average unit heat rate of 9807 Btu/Kwhr. If a higher dosage rate is recommended by the supplier of the additive due to the specific composition of his additive package, the higher recommended dosage rate should be implemented.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 59 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

B&W Recommended MgO Dosing Rate lb/MwHr 0.045 0.04 B&W Recommended MgO Dosing Rate Ib/MwHr 0.035 0.03 - 10 PPM V2O 0.025 - 20 PPM V2O 30 PPM V20 0.02 40 PPM V20 - 50 PPM V20 0.015 - 70 PPM V20 0.01 NOTE: Based on Average 0.005 **Plant Heat** Rate of 9807 0 Btu/Kwhr 18000 18100 18200 18300 18400 18500 OIL HHV (Btu/lb)

Figure 21 B&W Recommended MgO Dosing Rate Ib/Mwhr

NLH discontinued the use of the plant fuel oil additive system in 2014. The decision to take the system out of service may have been based on the improved fuel quality in 2006 and 2009. Load limitations started to occur in 2015 and 2016 on Unit #1 and #2 respectively and 2017 on Unit #3. No significant changes are seen in the fuel analysis between 2009 and 2015. With no other apparent changes in operating conditions, the MgO system was most likely reducing the tendency towards fouling of the air heater surfaces. It is recommended that the MgO dosing system is returned to service.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 60 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Vendors of oil additive packages often supply and recommend fuel oil additives which are designed to improve combustion. B&W has not seen any benefit to using these 'combustion improvers' in utility boilers as it relates to fouling or ash 'stickiness'.

6.3 Air Heater Differential Trend – Oct 22, 2017 to Jan 4, 2018 (Unit #3)

Unit #3 experienced a relatively rapid increase in air heater pressure drop associated with a reduction in load capability between Oct 22, 2017 and Jan 4, 2018. A trend of air heater differential vs. time based on Unit #3 PI operating data on an hourly basis was developed to identify if low load operation and/or low ACET was leading to increased fouling. An 'index' of air heater cleanliness was calculated i.e. (Air Heater Differential)/(Total Air Flow). If no further pluggage is occurring this index would be a constant over time. The index is plotted below In Figure 21. A plot of the unit MW output follows in Figure 22, and Figure 23 illustrates the air heater Average Cold End Temperatures (ACET) trend. Although these trends are based on Unit #3 data, they are also relevant to the similar air heaters of Units #1 and #2.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 61 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Figure 22 Air Heater Differential Index - Unit 3

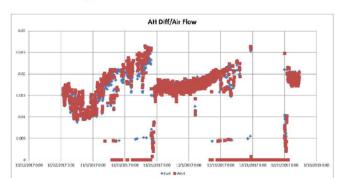


Figure 23 Unit 3 MW Output Oct 2017- Jan 2018

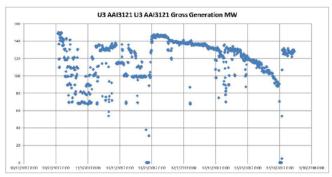
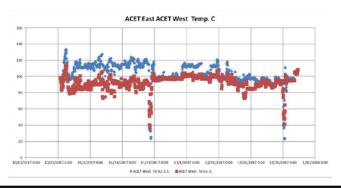



Figure 24 Air Heater ACET Oct 2017- Jan 2018 Unit 3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 62 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

Gaps in the chart data correspond to times when unit was off line or the differential pressure measurement was not available. The most rapid rise in differential index was during the November operating time frame. During this time period the unit operated for significant periods at loads less than 100 MW. The ACET for the west air heater was significantly lower than the east side, often dropping to as low as 80 C (176 F). The B&W recommended minimum ACET for regenerative air heaters on oil fired units is 190 F (88C). Although the operating ACET was not significantly lower than recommended there is a correlation between low ACET and increased draft loss.

Air heater differential pressure measurements were not available from mid December until a short shutdown on December 31 as the economizer gas outlet gas pressure transmitter appeared to be malfunctioning (Pegged?). During this time period, load dropped rapidly and the ACET's were at even lower levels. This further suggests that low ACET is leading to high rates of air heater pressure drop increase. Note that the air heater differential did not increase during the period from Nov 21 to mid December when the ACET was maintained above 100 C and unit load was above 140 MW. Based on this, a minimum 100 C (212 F) ACET target is recommended.

Figure 21 shows a significant drop in the differential index on or about November 20 and another on December 31, suggesting that the air heaters were washed at that time.

6.4 Heating Surface Removal

Removal of boiler heating surfaces (economizer or heater surfaces) which are leading to increased pressure drop would reduce furnace pressures and reduce FD fan loading. Surface removal can have multiple negative effects on boiler performance and mechanical integrity as follows:

6.4.1 Air Heater Heating Surface Removal

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 63 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

If removing just the 'hot end' elements, the air heater vender predicted performance with only cold end baskets installed would be required to evaluate the effect on boiler performance and efficiency. The air heater vendor would need to advise the effect if the air heaters structural integrity is suitable for the higher outlet gas temperatures under these conditions and any effect on air heater leakage rates.

Other problems that may occur if removing only the hot end baskets are as follows:

- Reduced combustion air temperature leading to unacceptable combustion i.e. high CO, high unburned carbon loss, and a visible plume. (Likely at part loads, possible for high loads)

- High flue gas outlet temperatures leading to possible structural damage to the air heater, downstream expansion joints, flues, and stack. (Likely at high loads, possibly at low loads)

- A significant drop in boiler efficiency (Certainly - all loads)

- Reheat spray flow required at high loads (Likely at high loads)

- Overheating of superheater and reheater tube metals, particularly primary outlets due to increased superheat sprayflow and high fluegas/steam flow ratio (Possibly - all loads)

The removal of hot end air heater baskets for continued operation is therefore not recommended.

Complete removal of air heater surfaces would certainly lead to very poor combustion and very likely structural damage of the flues / expansion joints / stack and thus would not be recommended.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 64 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

6.4.2 Economizer Heating Surface Removal

Limited removal of economizer surfaces which are blocked by fouling may be a viable option to reduce pressure drop if cleaning these surfaces is not possible. Any removal of economizer heating surfaces must consider the following:

- Increases in flue gas temperature to the air heaters which could lead to structural damage to air heaters and air heater inlet gas flues/expansion joints.
- Increases in air heater outlet gas temperature possibly leading to similar structural problems discussed for air heater surface removal.
- Exceedance of maximum stack temperature limitations structurally or environmentally
- Combustion air temperature increases, possibly beyond the temperature limitations of structural design and expansion joints in the ducts and burners.
- Higher levels of s/h spray and possible overheating of superheater tube metallurgy
- Possible negative effects on boiler natural circulation issues due to low feedwater temperature to drum (Would require review by boiler designer)

A thorough 'survey' of where the current areas of blockage are located in both banks would be required to estimate performance and performance predictions of the remaining surface would be 'estimates' at best. The path forward would be dependent on the results and accuracy of the survey.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 65 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

If the blockages are primarily in the bottom bank simplest would be removal of entire bank (After investigating the constraints listed above). If the blockage is in the top bank, and that bank is removed the temperature limitations of the bottom bank supports would also need to be understood.

Considering the above issues, partial removal of economizer surfaces should be considered as a last resort solution. It would also require a considerable inspection, engineering (including pressure part modifications), and construction effort.

Complete removal of economizer surfaces would certainly lead to boiler structural and operational problems and is thus not recommended.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 66 of 90

7 WARRANTY / LIMITATION OF LIABILITY

B&W warrants that advice and consultation services and engineering studies will be performed in a manner consistent with generally accepted industry standards and practices. The sole remedy is that any portion of the services furnished to Purchaser which is shown not to have been so performed shall be corrected or re-performed to the standards in effect at the time of original performance at B&W expense; provided all necessary information and access requested by B&W is given to substantiate such claim, and further provided that such nonconformance is detected by Purchaser within ninety (90) days following completion of that portion of the services, and B&W is immediately notified in writing.

The foregoing shall not apply to services performed under the direct supervision of Purchaser. B&W shall not be responsible for suitability or performance of work done by others or for loss or expense arising from same, unless it is specifically ordered by B&W.

There is no warranty or representation, express or implied, with respect to the accuracy, completeness or usefulness of the information contained in any report, or that the use of any report contents may not infringe privately-owned rights. Moreover, B&W will assume no liability for any direct or indirect damages, however caused, including (without limitation) by professional negligence or fundamental breach of contract, resulting from reliance upon or application of the contents of the report by any person.

IN CONSIDERATION OF THE ABOVE EXPRESS WARRANTY EXTENDED BY B&W, ALL OTHER WARRANTIES OR CONDITIONS, EITHER EXPRESS OR IMPLIED WHETHER ARISING AT LAW, IN EQUITY, BY STATUTE, CUSTOM OF TRADE, OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXCLUDED.

End of Report

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 67 of 90

Babcock & Wilcox PGG Canada
B&W Ref. 312C

8 APPENDICES

8.1 Alstom Letter Fritz Vogel – NLH Aug 3, 2000 "Predicted Performance Data For Boiler #1 & 2

			DECEIVED
		2000	Metric
Customer Servic Customer Servic Aug.03.2000	es Division		
Newfoundlan P.O.Box 29 Holyrood, NF A0A 2R0	and Labrador Hydro		
Attention:	Herb Dowden-George Mox Mike Taylor-Alonzo Pollard Cc Terry LeDrew	re-Ray Rossiter-John Mallam-Jerry Bob Garland	Goulding
Dear Gentlen	en:		· · · ·
Reference:	Predicted Performance Da	a for Boiler #1 & 2	
		npleted the review of the performan	ce data and attached you
will find the fo The data are way reflecting Our engineeri	lowing: Two (2) Tables of Perform One (1) Graph indicating th based upon the same par Station Data as the basis fo ng department emphasizes	nce Data in metric units e recommended Burner Tilt while op meters as applied during the uppr r recalculation. he fact that the burner tilt must be l	erating the boiler ade review and are in no
will find the fo The data are way reflecting Our engineer while operatin To assure tha	lowing: Two (2) Tables of Performs One (1) Graph indicating th based upon the same part Station Data as the basis for ng department emphasizes g at less then Control Load	nce Data in metric units recommended Burner Titt while or meters as applied during the upgn recalculation. the fact that the burner tilt must be I e. 70 % of MCR. at the appropriate location I sugge	verating the boiler ade review and are in no sept horizontal at all times
will find the fo The data are way reflecting Our engineer while operatin To assure tha in every availa	lowing: Two (2) Tables of Performs One (1) Graph indicating th based upon the same pars Station Data as the basis for ng department emphasizes g at less then Control Load t these information winds up ble instruction/operation ins and any discrepancies or har	nce Data in metric units recommended Burner Titt while or meters as applied during the upgn recalculation. the fact that the burner tilt must be I e. 70 % of MCR. at the appropriate location I sugge	erating the boiler ade review and are in no cept horizontal at all times at that copies be included

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 68 of 90

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

•		175	2.8	131.25		
· .		1	179.8	1		
Load	%	MCR	vwo	75%	50%	259
STEAM						
Steam Generated	kg/s	147.1	154.4	110.3	73.5	36.
Reheater Flow	kg/s	131.7	138,1	99.5	67.0	33.
Operating Pressures	kPa(g)	101.1				
Drum	in alg/	14162	14286	13700	13287	130
Primary SH Outlet	++	13976	14080	13590	13238	130
Final SH Inlet		13907	14004	13550	13219	130
Final SH Outlet		13480	13542	13300	13094	129
Reheater Inlet		3399	3572	2558	1696	814
Reheater Outlet	++	3185	3337	2386	1579	752
Operating Temperatures	°C				×.,	
	+ <u> </u>	377	376	377	365	353
Primary SH Outlet Final SH Inlet		370	376	363	365	353
Final SH Outlet		541	541	541	541	531
Reheater Inlet		353	358	329	308	289
Reheater Outlet	++	541	539	528	495	468
Design Pressures	kPa(g)					
Waterwalts & Headers	Kr 4(9)			15203		
Superheater				15203		
Reheater				4254		
BOILER FEEDWATER						
Economizer flow	kg/s	147.6	157.3	108.9	75.5	38.
Blowdown	kg/s	1.47	1.54	1.10	0.74	0.3
Operating Pressures	kPa(g)					
At Economizer Inlet (incl. static)	11 11 11	14348	14480	13845	13390	1310
Economizer Outlet		14162	14286	13700	13287	1302
Operating Temperatures	°C					
Economizer Inlet	<u> </u>	240	243	225	205	174
Economizer Outlet		302	303	294	270	241
Design Pressure	kPa(g)					
Economizer				15548		
DESUPERHEATING WATER						
Source				Boiler Feed Pum	p	
Pressure at Pump Discharge	kPa(g)	16286	16286	16286	16286	162
Temperature	°C	149	151	140	127	10
SH Spray Flow (Operating)	kg/s	2.3	0.0	3.8	0.0	0.0
SH Spray Flow (Design)	kg/s			13.86		
RH Spray Flow (Operating)	kg/s	0.0	0.0	0.0	0.0	0.0
RH Spray Flow (Design)	kg/s			5.27		
FLUE GAS						
Flow	kg/s					
Through Boiler - Economizer		159.8	166.7	134.6	94.9	53.
Air Heater Inlet		159.8	166.7	134.6	94.9	53.
Air Heater Outlet (corrected)		173.8	181.2	146.4	104.6	57.
Operating Drafts	Pa(g)					1
Furnace Outlet	- and	2816	3063	1996	997	309
Final SH Outlet		2741	2982	1943	970	30
RH Outlet		2567	2792	1820	909	28
Economizer Outlet		1595	1735	1131	566	17
Air Heater Outlet		324	352	230	117	36

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

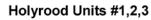
Page 69 of 90

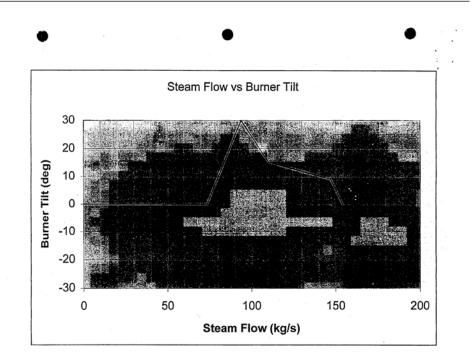
0

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3


Load	%	MCR	VWO	75%	50%	259
Operating Temperatures	°C					
Furnace Outlet		1421	1407	1333	1177	100
Final SH Outlet		1124	1122	1051	919	764
Primary SH Outlet		570	575	536	475	407
RH Outlet		827	831	768	665	543
Economizer Outlet		323	327	299	262	214
Air Heater Outlet (uncorrected)		172	174	164	151	136
Air Heater Outlet (corrected)		163	165	156	144	133
Gas Velocities (Average)	m/sec					4.2
SH Platen 1 - 12" transverse pitch		16.9	17.5	13.5	8.6	
SH Platen 2 - 12" transverse pitch		16.5	17.1	13.1	8.4	4.1
SH Finish - 12" transverse pitch		15.1	15.7	12.0	7.7	3.7
RH Finish - 6" transverse pitch		17.1	17.8	13.6	8.6	
RH Inlet - 6" transverse pitch		16.4	17.2	13.1	8.3	4.0
Primary SH - 4" transverse pitch		17.1	18.0	13.7	8.8	4.4
Economizer		12.5	13.2	10.1	6.6	3.4
AIR						<u> </u>
Flow	kg/s					53
Air Heater Inlet		158.4	165.1	134.1	96.1 86.5	48
Air Heater Outlet (corrected)		144.4	150.6	122.3		
Air to Burners		144.4	150.6	122.3	86.5	48.
Operating Pressures	Pa(g)				2977	126
Air Heater Inlet		6006	6417	4642	2977	120
Air Heater Outlet		5158	5495	4041	2078	105
Windbox		4137	4384	3317	2317	100
Operating Temperatures	°C					
Air Heater Inlet		54	52	63	76	90
Air Heater Outlet		233	234	222	204	11
Excess Air	%				20	30
Leaving Furnace		5	5	15	20	30
Leaving Economizer		5	5	15	20	
FUEL BURNT				12	8	8
No. Burners in Service		12 10.99	12	8.50	5.76	2.9
#6 Fuel Oil (Total)	kg/s		0.96	0.71	0.72	0.3
#6 Fuel Oil (Per Burner)	kg/s +/-Deg	0.92	0.96	+15	0.72	0.3
Burner Tilts	+/-Deg	+9		+10	<u> </u>	+°
ATOMIZING STEAM		12	12	12	8	8
No. Burners in Service	kala	0.961	0.957	0.998	0.680	0.7
Flow (Total) Pressure	kg/s kPa(g)	724	724	724	724	72
	KPa(g)	193	193	193	193	19
Temperature	-	193	193	195	185	19
HEAT BALANCE	%	2.07		3.62	2.8	1.8
Dry Gas Loss		3.87	4	3.62	2.8	1.8
Moisture in Fuel		0			4.58	44
Moisture from Hydrogen	II	4.83	4.85	4.73	4.58	4.4
Moisture in Air	++	0.09	0.1	0.09	0.07	0.0
Carbon Loss	1	0.2	0.2	0.28	0.4	0.8
Radiation Loss		0.2	0.2	0.28	0.4	0.0
Unaccounted Loss				0.5	0.5	0.
Manufacturers Margin		0.5	0.5	9.72	8.85	8,1
Total Losses Overall Efficiency		9.99	10.15	9.72	91.15	8.1


Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 70 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 71 of 90

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

8.2 Turbine Heat Balance Conditions Units #1 and #2 Uprated 1988

1	2 ST _		140	at 1875	"psig
	 NEWFDUNDLAND TB. NG. 9403104 TIR# 10236-893A, UPRATE 1875G-1000/1000F-1.5 IN. HGA 	940311		ε	3/5/88
/	GROSS HEAT RATE = 7991 BTU/KWHR GENERATOR OUTPUT = 191199 KW RATED GENERATOR LOSS = 1864 KW AT .93 P.F., STEAM CONDITIONS 1875 PSIG, 1000/100	45 PSIG L	(7) ME	CH 1 000	- 100 101
		F LB/HR	P PSIA	ΤF	H STU/LB
	BEDWDUWN	1225560	1890.	1000.0	1477.70
	WATER TO ATTEMPERATOR FEEDWATER TO BOILER STEAM FROM REHEATER STEAM TO REHEATER	1225560 1095677 1095677	488.6		288.54 453.82 1520.66
	TURBINE	1043877	342.9	681.3	1344.42
	STEAM TO THROTTLE VALVE STEM LEAKAGE	1225560	1870.	1000.0	1477.70
	TO H.P. TURB. EXHAUST TO STEAM SEAL REG. ENTERING 1-R CONTROL STAGE NO. 1 ENTERING DIAPHRAGM STAGE NO. 2 3-R PACKING	999	542.9 16.70 1856. 1507.		1477.70 1477.70 1477.70 1456.74
	LEAK-OFF TO HEATER NO. 4 EXTR. SEAL FLOW TO STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND. BEFORE PRESSURE DROP BEFORE PRESSURE DROP	6794 2952 182 1194326 1194326 1095677 1095677	16.70 548.4 542.9 488.6	681.0	1344.26 1344.26 1344.26 1344.26 1344.26 1520.66 1520.66
	FLOW FROM STAGE 1 SHELL ENTERING DIAPHRAGM STAGE NO. 11 ENTERING DIAPHRAGM STAGE NO. 14 ENTERING DIAPHRAGM STAGE NO. 16 2-R PACKING	18876 1114553 1064554 1034026	1507. 478.9 259.5 155.9		1456.74 1519.57 1440.09 1380.28
	SEAL FLOW TO STEAM SEAL RES. VENT FLOW TO GLAND SEAL COND. SEFORE PRESSURE DROP MAIN FLOW DIVIDED BY 2 AT THIS POINT	287	16.70 79.82		1310.25 1310.25 1310.25
	ENTERING DIAPHRAGM STAGE ND. 18 ENTERING DIAPHRAGM STAGE ND. 19 ENTERING DIAPHRAGM STAGE ND. 21 ENTERING COND. LAST STAGE ND. 22 BEFORE ENTRY OF LEAKAGE	497523 465096 423646 423646 423646	46.04 12.68 5.607		1310.25 1260.23 1160.41 1109.39 1044.37
	SEAL FLOW FROM STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND. PEFORE PRESSURE DROP Nfid. 1 Labrador Hydro ENGLWEBRING 4 CONST.	1401 499 424096 424096	16.70 1.006 0.7367		1356.80 1356.80 1044.70 1044.70
	AUG 31 1983			SC2HA55 page 1	
	ST. JOHN'S, NFLD.				

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 72 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

	· · · ·				
	HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (5.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	100080 1225560 1225560 100080	515.9	470.2 397.9	1344.42 1344.42 453.82 375.38 383.89
	HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	.49999 1225560 1225560 100080 150079		397.9 350.8	1440.09 1440.09 375.38 326.09 383.89 333.24
	HEATER NO. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	30528 6794 37322 1225560 1225560 150079 - 187401		350.8 314.3	288.54 333.24
	FLOW FROM F.W. TO BOILER	· 0	2362.	314.3	288.54
0	FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	1225560 1225560	2362.	314.3 306.9	289,54
	HEATER NO. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	36894 1225560 1001265 187401			1310.25 1310.25 276.84 235.38 294.91
	HEATER NO. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	64854 1001265 1001265 64854		266.4 195.8 206.8	1260.23 1260.23 235.38 165.09 175.02
				502EA55	5.0

page 2 of 3

:

:

Newfoundland and Labrador Hydro

B&W	Ref.	312C

11

Holyrood Units #1,2,3

1.200	• • •				
	HEATER NO. 1 (PUMPED DRAINS)				
	TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE	82900	12.68	231.2	1160.41
	STEAM FROM STEAM SEAL DUMP	4350			1356.80
	STEAM TO HEATER (7 PC DELTA P)	87250	11.79		1170.20
	FLOW FROM MAKEUP SOURCE	0/200	11.77		453.82
	FLOW FROM FW. BELOW HEATER 1	0			453.82
	DRAINS ENTERING	64854			175.02
	DRAINS PUMPED TO FEEDWATER	152104	11 70	201 1	169.18
	FEEDWATER AFTER DRAIN ENTRY	1001265	11.77		165.09
	FEEDWATER LEAVING (5 DEG TTD)	849161			164.36
	FEEDWATER ENTERING	849161			61.06
	FEEDWATER CATERING	047101		12.0	01.08
	STEAM SEAL REGULATOR				
	FLOW FROM VALVE STEM PACKING	999			1477.70
	FLOW FROM 3-R PACKING SEAL	2952			1344.26
	FLOW FROM 2-R PACKING SEAL	1800			1310.25
	FLOW TO 2-R PACKING SEAL	1401			1356.80
	MAKE-UP FROM TURBINE INLET	С			1477.70
	DUMP TO HEATER NO. 1 EXTR	4350	12.68		1356.80
	GLAND SEAL CONDENSER				
	STEAM FROM 3-R PACKING VENT	182			1344.26
	STEAM FROM 2-R PACKING VENT	287			1310.25
	STEAM FROM 2-R PACKING VENT	499			1356.80
	FEEDWATER LEAVING	849161		92.8	61.06
	FEEDWATER ENTERING	849161		91.5	59.74
	DRAINS TO CONDENSER	968			179.48
	FLOW FROM F.W. TO HEATER NO. 1	0 -	11.79	91.5	453.82
	FEEDWATER PUMP (0. BTU HEAT RISE)				
	FEEDWATER LEAVING	849161	100.0	91.5	59.74
	FEEDWATER ENTERING	349161		91.7	59.74
	CONDENSER				
	STEAM TO CONDENSER	424096	0.7367		1044.70
	DRAINS ENTERING	968			
	FEEDWATER LEAVING	849161	0.7367	91.7	59.74

RATING FLOW (SUARANTEED) IS 1157000 LB/HR AT INITIAL STEAM CONDITIONS OF 1875 PSIG. 1000 F. TO ASSURE THAT THE TURBINE WILL PASS THIS FLOW. CONSIDERING VARIATIONS IN FLOW CCEFFICIENTS FROM EXPECTED VALUES, MANUFACTURING TOLERANCES ON DRAWING AREAS, ETC., WHICH MAY AFFECT THE FLOW, THE TURBINE IS BEING DESIGNED FOR AN EXPECTED FLOW OF 1225560 LS/HR.

CALCULATED DATA NOT GUARANTEED.

502H1550 page 3 of 3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 74 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

//		. A. 1			Иcr	
1	0	*NEWFOUNDLAND TB. ND. 940310+9403 TIR# 10236-893A, UPRATE 19756-1000/1000F-1.5 IN. HGA	51.1		6/5	5/88
		GROSS HEAT RATE = (792) BTU/KWHR GENERATOR DUTPUT = 174160 KW RATED GENERATOR LOSS = 1864 KW AT .90 P.F., STEAM CONDITIONS 1875 PSIG, 1000/100	45 PS10	H7 ME	CH 1 000	= 400 VU
			F LB/HR	P PSIA	TF	H BTU/LB
		BLOWDOWN	1167200 0	1890.	1000.0	1477.70
			0 1167200 1044878 1044878	466.3		285.40 448.44 1521.31 1340.63
		TURBINE				
		VALVE STEM LEAKAGE TO H.P. TURB. EXHAUST	1167200 1477	1970. 518.1	1000.0	1477.70
		TO STEAM SEAL REG.	953			1477.70
		ENTERING 1-R CONTROL STAGE NO. 1	1164770			1477.70
) (ENTERING DIAPHRAGM STAGE NO. 2 3-r packing	1146779			1451.49
	-	LEAK-OFF TO HEATER NO. 4 EXTR.		149.0		1340.46
		SEAL FLOW TO STEAM SEAL REG.	2824	16.70		1340.46
		VENT FLOW TO GLAND SEAL COND. BEFORE PRESSURE DROP	183			1340.46
			1137269 1137269			1340.46
			1044878	466.3	8/1./	1521.31
			1044878			1521.51
		FLOW FROM STAGE 1 SHELL	17991	1432.		1451.49
			1062869	457.0		1520.13
		ENTERING DIAPHRAGM STAGE NO. 14	1015914			1440.67
		ENTERING DIAPHRAGM STAGE NO. 15 2-r packing	987378	149.0		1380.86
		SEAL FLOW TO STEAM SEAL REG.	1705	16.70		1310.80
		VENT FLOW TO GLAND SEAL COND.	287			1310.80
		SEFORE FREESURE DROP	950578	76.31		1310.50
		MAIN FLOW DIVIDED BY 2 AT THIS POINT ENTERING DIAPHRAGM STAGE NO. 18	175000	74 70		1714
		ENTERING DIAPHRAGM STAGE NO. 19	444489	44.05		1310.80 1260.78
		ENTERING DIAPHRAGM STAGE NO. 21	405879			1160.98
		ENTERING COND. LAST STAGE NO. 22	405879			1109.82
		BEFORE ENTRY OF LEAKAGE 2-R PACKING	405879	0.9833		1045.02
	10	SEAL FLOW FROM STEAM SEAL REG.	1402	16.70		1355.10
- 6	2	VENT FLOW TO GLAND SEAL COND.	- SOO			1355.10
		SEFORE PRESSURE DROP Nfld. & Labrador Hydro		0.9833		1045.36
		EXHAUST FLUX ENGINEERING & CONST.	406330	0.7367	91.7	1045.36
		AUG 31 1988			5025A28 page 1	9 (rav.1) of 3
		}	1			

Newfoundland and Labrador Hydro (NLH) Holyrood Station

Engineering Study - Unit Capacity Limitations

Page 75 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

V.

Holyrood Units #1,2,3

\mathcal{F}	· · ·				
0	HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (S.O PC DELTA P) FEEDWATER LEAVING (O DEG TTD) FEEDWATER ENTERING DRAIN COCLER DRAINS LEAVING D.C. (10 DEG TD)	93868 1167200 1167200 93868	492.2	465.4 393.9	1340.63 1340.63 448.44 371.15 379.54
	HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COCLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD) HEATER NO. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE	46955 1167200 1167200 93868 140823 26955 28536		393.9 347.2 357.2	1440.67 1440.67 371.15 322.43 379.54 329.49 1380.66 1380.66
	STEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD) FLOW FROM F.W. TO BOILER	4503 35039 1167200	138.5	311.2 321.2	1340.46 1373.36 322.43 285.40 329.49
0	FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	1167200 1167200			285.40
	HEATER NO. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	34809 1167200 956529 175862 •	70.97		1510. 90 1310. 80 275.70 232.64 291.70
	HEATER NO. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	61200 958529 958529 61200		451.0 243.7 194.8 204.8	1250.78 232.54 153.04
				501HA13 page 2	9 (rev.1) 04 5

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 76 of 90

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

<u>,</u>	.)* ~ '					
۲	HEATER NO. 1 (PUMPED DRAINS) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM STEAM SEAL DUMP STEAM TO HEATER (7 PC DELTA P) FLOW FROM MAKEUP SOURCE FLOW FROM FW. BELOW HEATER 1 DRAINS PUMPED TO FEEDWATER FEEDWATER AFTER DRAIN ENTRY FEEDWATER AFTER DRAIN ENTRY FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING	81479 0 61200	11.30 11.30		163.04	
	STEAM SEAL REGULATOR FLOW FROM JAR PACKING SEAL FLOW FROM JAR PACKING SEAL FLOW FROM 2-R PACKING SEAL FLOW TO 2-R PACKING SEAL MAKE-UP FROM TURBINE INLET DUMP TO HEATER NO. 1 EXTR	953 2824 1705 1402 0 4079	12.16		1477.70 1340.46 1310.80 1355.10 1477.70 1355.10	
	GLAND SEAL CONDENSER STEAM FROM 3-R PACKING VENT STEAM FROM 2-R PACKING VENT STEAM FROM 2-R PACKING VENT FEEDWATER LEAVING FEEDWATER ENTERING DRAINS TO CONDENSER	183 287 500 813630 813630 970		92.8 91.5	1340.46 1310.80 1355.10 61.12 59.74 179.48	
	FLOW FROM F.W. TO HEATER NO. 1	0	11.30	91.5	448.44	
	FEEDWATER PUMP (O. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	813430 813430	100.0	91.5 91.7		
	CONDENSER Steam to Condenser Drains Entering Feedwater Leaving	406330 970 813630	0.7367 0.7367			
				502HA page 3	289 (rev.1 of 3)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 77 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

Ħ١		a				1 1400
11	*				759	6 MCR
11	-	-				
11		NEWFOUNDLAND TB. NO. 540310+	740311		Ξ	/5/88
4	100	 TIR# 10236-893A, UPRATE 				
]	0	18756-1000/1000F-1.5 IN. HEA				
		GROSS HEAT RATE = 7987 BTU/KWHR				
		GENERATOR OUTPUT = 135841 KW RATED	194445 KV	A90 P	.F. CON	N COOLED
		GENERATOR LOSS = 1566 KW AT .90 P.F.,	20 PSIG	H2, ME	CH LOSS	
		STEAM CONDITIONS 1875 PSIG, 1000/100	0 F, 1.5	IN HEA		3400 RPM
			E 1 5 /05	P PSIA	~ ~	
		HEAT SOURCE	F LB/MR	P PSIA	1 1-	H BIU/LB
		STEAM FROM BOILER	875400	1890.	1000.0	1477.70
		BLOWDOWN	0			
		WATER TO ATTEMPERATOR	0			267.37
		FEEDWATER TO BOILER	875400		437.9	418.26
		STEAM FROM REHEATER		353.6		1524.61
		STEAM TO REHEATER	789636	392.9	629.9	1325.08
		TURBINE				
		STEAM TO THROTTLE	575400	1890.	1000.0	1477.70
		VALVE STEM LEAKAGE	693,21	5		1477.70
		TO H.P. TURB. EXHAUST	1707	392.9		1477.70
		TO STEAM SEAL REG.	723	16.70		1477.70
			872970			1477.70
		ENTERING DIAPHRAGM STAGE NO. 2 3-R PACKING	857428	1061.		1429.55
	-	LEAK-OFF TO HEATER NO. 4 EXTR.	4992	113.8		1324.77
		SEAL FLOW TO STEAM SEAL REG.	2147	16.70		1324.77
		VENT FLOW TO GLAND SEAL COND.	186	101/0		1324.77
		BEFORE PRESSURE DROP	852103	396.9		:324.77
		BEFORE FLOW ENTRY	852103	392.9	629.3	1324.77
		BEFORE PRESSURE DROP	787536			1524.61
		BEFORE ENTRY OF LEAKAGE	789636	346.5		1524.61
		1-R PACKING FLOW FROM STAGE 1 BHELL	13542	1051.		1429.55
		ENTERING DIAPHRAGM STAGE NO. 11	805178			1523.01
		ENTERING DIAPHRAGM STAGE NO. 14	770653			1443.67
		ENTERING DIAPHRAGH STAGE NC. 15	781484			383.86
		2-R PACKING				
		SEAL FLOW TO STEAM BEAL REG.		16.70		1010.68
		VENT FLOW TO GLAND SEAL COND.	286			1313.85
		BEFORE PRESSURE DROP MAIN FLOW DIVIDED BY 2 AT THIS POINT	708248	38.4á		1313.68
		ENTERING DIAPHRAGM STAGE NO. 15	J=2624	57.29		1313.68
		ENTERING DIAPHRAGM STAGE NO. 19	340875	33.89		1260.72
		ENTERING DIAPHRAGM STAGE NO. 21	314735	9.473		1164.08
		ENTERING COND. LAST STAGE NC. 22	31.4735	4.148		1112.07
		BEFORE ENTRY OF LEAKAGE	514755			1049.49
		2-R PACKING				
		SEAL FLOW FROM STEAM SEAL REG.	:408 503	16.70		1348.53
		VENT FLOW TO GLAND SEAL COND. BEFORE PRESSURE DROP.	315187	0.8825		1045.52
		EXHAUST FLOW	0:5187	0.7367		1044.93
		ENGINEERING & CONST.				
					50203	(rev.1)
		AUG 31 1988			0408	(gav.1) 1 of 3
		ST. JOHN'S, NFLD.				

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 78 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

B&W Ref. 312C	B&W	Ref.	31	2C
---------------	-----	------	----	----

 · · ·				
HEATER NG. 5 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST . STEAM TO HEATER (5.0 PC DELTA P) FEEDWATER LEAVING (D DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	64174 275400 275400 64174	392.9 373.3 373.3	627.9 1325.08 1325.08 418.26 347.14 381.0 354.87	
HEATER ND. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COCLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	32525 875400 875400 64174 96698	188.7 175.5	(371.0) 325.9 325.9 347.14 301.52 354.87	
HEATER NO. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DES TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	19169 4992 24161 875400 875400 96698 120860	113.8 113.8 105.8 <i>13</i> 6 105.8	1383.86 1324.77 1371.65 326.9 301.52 293.5 267.37 308.14	
FLOW FROM F.W. TO BOILER	0	2362.	293.5 267.37	
FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	875400 875400	2362.	293.5 267.37 286.3 255.67	
HEATER NO. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	24734 875400 729806 120860	58.46 54.37 54.37	1313.68	
HEATER NG. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DES TTD) FEEDWATER ENTERING DRAIN CODLER DRAINS LEAVING D.C. (10 DES TD)	43499 729806 729806 43499	33.89 31.52 770 73 31.52	454.7 1263.72 1263.72 248.2 216.88 182.9 151.16 192.9 161.03 5028A290 (rev.1	.)
			page 2 of 3	

0

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 79 of 90

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

	an a			112 MC	. υ
, ,	HEATER NO. 1 (PUMPED DRAINS) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE	52280			1164.08
C	STEAM FROM STEAM SEAL DUMP STEAM TO HEATER (7 PC DELTA P) FLOW FROM MAKEUP SOURCE	2678 54958 0	8.510		1348.53 1173.07 418.26
	FLOW FROM FW. BELOW HEATER 1 DRAINS ENTERING DRAINS PUMPED TO FEEDWATER	0 43499 98457	8.810		418.26 161.03 155.31
	FEEDWATER AFTER DRAIN ENTRY FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING	729806 631350 631350	73	182.9 182.3 93.2	151.16 150.51 61.52
	STEAM SEAL REGULATOR FLOW FROM VALVE STEM PACKING FLOW FROM 3-R PACKING SEAL FLOW FROM 2-R PACKING SEAL FLOW TO 2-R PACKING SEAL FLOW TO 2-R PACKING SEAL MAKE-UP FROM TURBINE INLET DUMP TO HEATER NO. 1 EXTR	723 2147 1216 1408 0 2678	9.473		1477.70 1324.77 1313.68 1348.53 1477.70 1348.53
۲	GLAND SEAL CONDENSER STEAM FROM 3-R PACKING VENT STEAM FROM 2-R PACKING VENT STEAM FROM 2-R PACKING VENT FEEDWATER LEAVING FEEDWATER ENTERING DRAINS TO CONDENSER	186 286 503 631350 631350 975		93.2 91.5	1324.77 1313.68 1348.53 61.52 59.74 179.48
	FLOW FROM F.W. TO HEATER NO. 1	0	8.810	91.5	418.26
	FEEDWATER PUMP (O. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	631350 631350	100.0	91.5 91.7	59.74 59.74
	CONDENSER STEAM TO CONDENSER DRAINS ENTERING FEEDWATER LEAVING	315187 975 631350	0.7367		1049.92
	·	651330	9.7387		290 (rev.1)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 80 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

1/2 2 2					
/	NEWFOUNDLAND TE. NO. 940310+	940711	\sim	_	
	TIR# 10236-893A, UPRATE 18756-1000/1000F-1.5 IN. HGA				8/5/3
5					
GROS GROS	ES HEAT RATE = 8109 BTU/KWHR				
GEN	ERATOR DUTPUT = 93140 KW RATED ERATOR LOSS = 1092 KW AT .90 P.F.,	194445 K	A90 P	.F., CO	NV COCLED
STE	EAM CONDITIONS 1875 PSIG, 1000/100	0 F, 1.5	IN HGA	CH LOSS	= 609 KW 3600 RPM
		F LB/HR	P PSIA	TF	H STU/LB
	SOURCE				
	FEAM FROM BOILER	583600	1890.	1000.0	1477,70
	OWDOWN				
WF.	ATER TO ATTEMPERATOR	0			243.38 379.49 1527.96
FE	EDWATER TO BOILER	283400		401.7	379.49
	EAM FROM REHEATER	531457	238.9		1527.96
51	TEAM TO REHEATER	531457	268.5	590.6	1312.75
TURE					
ST					1477,70
VP	LVE STEM LEAKAGE TO H.P. TURB. EXHAUST TO STEAM SEAL REG. ITERING 1-R CONTROL STAGE NO. 11 ITERING DIAPHRAGM STAGE NO. 2 . 4	1010			
	TO OTEAM OCAL OCE	1942	265.5		1477.70
0	TERING 1-0 CONTROL STACE NO 11	686	16.70		1477.70
EN	TERING DIACHPARM STAGE NO. 2	581170	. 1882.		1477.70
	R PACKING	3/2116	1.049.9		1411.47
	LEAK-OFE TO HEATER NO. 74 EXTR.	3412	_77.52	· · ,	1312.19
	SEAL FLOW TO STEAM SEAL REG.	1412	16:70		1312.19
- CD	VENT FLOW TO GLAND SEAL COND.	188	101/0		1312.19
9 BS	FORE PRESSURE DROP	567104	268.2		1312 19
BE	FORE FLOW ENTRY	567104	265.5	589.4	1312.19
	FORE PRESSURE DROP	531457	238.9	00/10	1527.96
ĐE	FORE ENTRY OF LEAKAGE	531457	234.1		1312.19 1312.19 1312.19 1527.96 1527.96
	R PACKING				
-	FLOW FROM STAGE 1 SHELL	9054	699.9		1411.47
EN	TERING DIAPHRAGM STAGE NO. 11 TERING DIAPHRAGM STAGE NO. 14	540511	234.1		1526.00
	TERING DIAPHRAGM STAGE NO. 14	520981 510064	128.1		1446.88
2-	8 PACKING	010084	//.52		1387.12
		694	16.70		1316.86
	VENT FLOW TO GLAND SEAL COND.	285	16.70		1316.86
		493763	39.99		1316.86
MO	IN FLOW DIVINED BY 2 AT THIS POINT				
EN	TERING DIAPHRAGM STAGE NO. 18 TERING DIAPHRAGM STAGE NO. 19 TERING DIAPHRAGM STAGE NO. 21 TERING COND. LAST STAGE NO. 22 SCREENING COND. LAST STAGE NO. 22	246882	39.19		1316.86
EN	TERING DIAPHRAGM STAGE NO. 19	233427	23.30		1267.02
EN	TERING DIAPHRAGM STAGE NO. 21	218791	6.624		1167.74
EN	TERING COND. LAST STAGE NO. 22	218791 218791	2.868		1114.65
5	PORE ENTRY OF LEARAGE	210/91	0.8049		1058.92
2-	R PACKING SEAL FLOW FROM STEAM SEAL REG.		14.70		
	VENT FLOW FROM STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND.		16.70		1344.61
	VENT FLUW TO GLAND BEAL COND.	505 219245	0.00/0		1344.61
E Y	FORE PRESSURE DROP HAUST FLON	219245	0.5069	o	1059.51
		/270	V1/50/		91 (rev.1)
				page 1	07 3

2EP-28-1968 12:14 ERON 6E CHN HIZ BFD'101 EBO 10 A-1102171737 E-162

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 81 of 90

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

 HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (S.O PC DELTA P) FEEDWATER LEAVING (O DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD) 	37588 583600 583600 37588	265.5	590.6 40.7 340.7	1312.75 1312.75 379.49 315.73
HEATER NO. 5 (CLOSED WITH D.C.) TURSINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	19530 583600 583600 37588	128.1 119.2	836.2 340.7 299.9	1446.88 1446.68 315.73 273.93
HEATER NG. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE SIEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	10917 3412 14329 583600 583600 57118 71447	77.52 77.52 72.10	713.1 299.9 269.8 279.9	1387.12 1387.12 1312.19 1349.28 273.93 243.38 280.03 248.99
FLOW FROM F.W. TO BOILER		2362.	269.8	243,38
FEEDWATER LEAVING	583600	2362.	267.8	243.38 231.68
HEATER NO. 3 (OPEN) TURBINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING DRAINS ENTERING	383800	3/.19	262.7	1316.86 1316.86 231.68 195.73 248.99
HEATER NO. 2 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (5 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	26909 496831 496831			
				1 (rev.1) of 2
•				

2EP-28-1953 12:12 FROM GE CAN ATS BLD.101 FBO TO 9-170977371231 P.N3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 82 of 90

Newfoundland and Labrador Hydro

B&W	Ref.	312C	

Holyrood Units #1,2,3

A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACTACT OF A CONTRACT O				
HEATER NO. 1 (PUMPED DRAINS)				
TURBINE SHELL CONDITIONS		4 100	040 /	
TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM STEAM SEAL DUMP	20222	6.624		
STEAM FROM STEAM SEAL DUMP	1183			1167.74
STEAM FROM STEAM SEAL DUMP STEAM TO HEATER (7 PC DELTA P) FLOW FROM MAKEUP SOURCE	70454	4 140		1344.61
SIEAM TO HEATER (7 PC DELIA P)	30434	5.160		1174.61
FLOW FROM FW. BELOW HEATER 1	. 0			379,49
PLUW PRUM PW. BELUW MERIER I				379.49
DRAINS ENTERING	26909			144.78
DRAINS PUMPED TO FEEDWATER FEEDWATER AFTER DRAIN ENTRY	3/363	6.160	171.2	139.18
FEEDWATER AFTER DRAIN ENTRY				134.95
	439468		166.2	134.40
FEEDWATER ENTERING	439468		94.0	62.30
STEAM SEAL REGULATOR				
	468			
FLOW FROM 3-R PACKING SEAL				1477.70
FLOW FROM 2-R PACKING SEAL	1412			1312.19
FLOW FROM 2-R PACKING SEAL	694 1411			1316.86
				1344.61
MAKE-UP FROM TURBINE INLET DUMP TO HEATER NO. 1 EXTR	0	6.624		1477.70
DUMP TO HEATER NO. 1 EXTR	1183	6.624		1344.61
GLAND SEAL CONDENSER				
STEAM FROM 3-R PACKING VENT	198			
STEAM FROM STR FACKING VENT	158			1312.19
STEAM FROM 2-R PACKING VENT STEAM FROM 2-R PACKING VENT	285			1316.86
STEAM FRUM Z-R PALKING VENT	505			1344.61
ALL FEEDWATER LEAVING ACTIVE FORM	439468 -	2030	94.0	62.30
FEEDWATER ENTERING	437468	- 11 A	91.5	59.74
T DRAINS TO CONDENSER	979			179.48
FLOW FROM F.W. TO HEATER NO. 1	~	é.160	01 F	270 40
PLOW FROM F.W. TO HEATER NO. 1	0	6.140	41.5	3/9.49
FEEDWATER PUMP (0, BTU HEAT RISE)				
	439649	100.0	01 5	50 74
FEEDWATER ENTERING	439468	100.0	91.3	59.74
	40,400		/ /	57174
CONDENSER				
STEAM TO CONDENSER	219245	0.7367		1059.51
STEAM TO CONDENSER DRAINS ENTERING	979			1.007101
	ATRALD	0.7347	01 7	50 74
		0./38/	71./	37.74
			502HA2	91 (rev.1)
			page 3	

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

01

10211016011-6

Page 83 of 90

266-58-1388 15:170 FKNW OF CHU HIS RED'INT LED

.....

Newfoundland and Labrador Hydro

B&W Ref. 312C

Holyrood Units #1,2,3

W L -					
1.2.				250	6 MCR
	 NEWFOUNDLAND TB. NO. 9403104 TIR# 10236-893A, UPRATE 	940311			8/5/85
1/.	18756-1000/1000F-1.5 IN. HEA				
1					
' (B)	GROSS HEAT RATE 8752 BTU/KWHR				
-	GENERATOR OUTPUT = 45259 KW RATED GENERATOR LOSS = 817 KW AT .90 P.F., STEAM CONDITIONS 1875 RELS				
	STEAM CONDITIONS 1875 PSIG, 1000/100	0 F, 1.5	IN HGA	3400 P	= 609 KW RPM
		F LB/HR	P PSIA	TF	H BTU/LB
	HEAT SOURCE				
	STEAM FROM BOILER BLOWDOWN	291800		1000.0	1477.70
	WATER TO ATTEMPERATOR	0			
	FEEDWATER TO BOILER	291800		346.3	
	STEAM FROM REHEATER	268940	121.5		1531.37
	STEAM TO REHEATER	268940	135.0	572.3	1313.12
	TURBINE			300	
	STEAM TO THROTTLE	291344	1890.	1000.0	1477.70
	VALVE STEM LEAKAGE TO H.P. TURB. EXHAUST				
	TO STEAM SEAL REG.	2182 248	135.0		1477.70
	ENTERING 1-R CONTROL STAGE NO. 1	288914	1888.		1477.70 1477.70
	ENTERING DIAPHRAGM STAGE NO. 2 3-R PACKING	284403	348.7		1408.92
	LEAK-OFF TO HEATER NO. 4 EXTR.	1775	39.88		
-	SEAL FLOW TO STEAM SEAL REG.	583	16.70		1311.84
\bigcirc	VENT FLOW TO GLAND SEAL COND.	189			1311.84
	BEFORE PRESSURE DROP BEFORE FLOW ENTRY	281857	136.3		1311.84
	BEFORE PRESSURE DROP	281857	135.0	569.8	
	SEFORE ENTRY OF LEAKAGE		121.5		1531.37 1531.37
	1-R PACKING				1001.07
	FLOW FROM STAGE 1 SHELL ENTERING DIAPHRAGM STAGE NO. 11	4511	348.7		1408.92
	ENTERING DIAPHRAGM STAGE NO. 14	273450	119.1		1529.35
	ENTERING DIAPHRAGM STAGE NO. 16	261049			1450.61
	2-R FACKING				
	SEAL FLOW TO STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND.	49 284	16.70		1320.80
	BEFORE PRESSURE DROP		20.69		1320.80 1320.80
	MAIN FLOW DIVIDED BY 2 AT THIS POINT				1020.00
	ENTERING DIAPHRAGM STAGE NO. 18	126954	20.27		1320.80
	ENTERING DIAPHRAGM STAGE NO. 19 ENTERING DIAPHRAGM STAGE NO. 21 ENTERING COND. LAST STAGE NO. 22	121021	12.14		1271.18
	ENTERING COND. LAST STAGE NO. 22	116204	3.546		1172.79 1118.34
	BEFORE ENTRY OF LEAKAGE	116204			1087.86
	2-R PACKING SEAL FLOW FROM STEAM SEAL DEG				
	SEAL FLOW FROM STEAM SEAL REG. VENT FLOW TO GLAND SEAL COND.	479	16.70		1399.45
	BEFORE PRESSURE DROP	116633	0 7571		1087.01
100	EXHAUST FLOW Nfld. 3 Labrador Hydro	116633	0.7367	91.7	
	ENGINEERING 4 CONST.			502842	92 (rev.1)
				page 1	
	AUG 31 1988				
	ST. JOHN'S, NFLD.				

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 84 of 90

Newfoundland and Labrador Hydro

B&W I	Ref.	31	2C
-------	------	----	----

Holyrood Units #1,2,3

t en el terre				
HEATER NO. 6 (CLOSED WITH D.C.) CONDITIONS AT H.P. TURB. EXHAUST STEAM TO HEATER (S.O PC DELTA P) FEEDWATER LEAVING (O DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS LEAVING D.C. (10 DEG TD)	15099 291800 291800 15099		346.3	1313.12 1313.12 321.46 267.68 273.71
HEATER NO. 5 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM TO HEATER (7.0 PC DELTA P) FEEDWATER LEAVING (0 DEG TTD) FEEDWATER ENTERING DRAIN COOLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DEG TD)	8302 291800 291800 15099 23401	65.57 60.98 60.98	838.8 293.8 257.7 267.7	1450.61 1450.61 267.68 231.22 273.71 236.66
HEATER ND. 4 (CLOSED WITH D.C.) TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE STEAM FROM 3-R PACKING LEAK EXTRACTION STEAM (7.0 PC DELTA P) FEEDWATER LEAVING (5 DES TTD) FEEDWATER ENTERING DRAIN COGLER DRAINS ENTERING DRAINS LEAVING D.C. (10 DES TD)	\$362 4100 1775 5875 291800 291800 23401 29275	39.88 39.88 37.09 37.09	717.2 257.7 232.5 242.5	205.89 236.66
FLOW FROM F.W. TO BOTLER NO.4	5875	2562	232.5	205.89
FLOW FROM F.W. TO BOILER PUNP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING	\$875 29:800 291800	2362. 2362 <i>.</i>	232.5 232.5 225.7	205.89 205.89 174.19
FLOW FROM F.W. TO BOILER	29:800 291800		232.5 225.7	205.39 194.19 1320.80 1320.80 1320.80
FLOW FROM F.M. TO BOILER FEEDWATER PUMP (12. BTU HEAT RISE) FEEDWATER LEAVING FEEDWATER ENTERING HEATER NO. 3 (OPEN) TURSINE SHELL CONDITIONS EXTRACTION STEAM (7 PC DELTA P) FEEDWATER LEAVING FEEDWATER ENTERING	29:800 29:800 29:800 29:800 29:57:17	2362. 20.69 19.24	232.5 225.7 570.9 225.9 194.0	205.89 194.19 1320.80 1320.80 1320.90 174.19 162.27

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 85 of 90

Newfoundland and Labrador Hydro

B&W F	Ref.	312C	;
-------	------	------	---

Holyrood Units #1,2,3

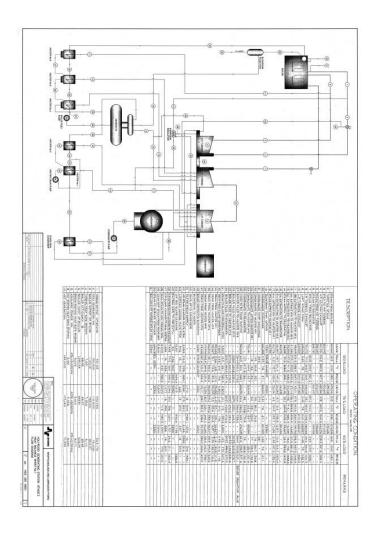
HEATER NO. 1 (PUMPED DRAINS)				
TURRINE CHELL CONDITIONS		7 544	251 5	1170 70 1
, TURBINE SHELL CONDITIONS STEAM EXTRACTED FROM TURBINE	9635	5.540	201.0	1172.79
STEAM FROM STEAM SEAL DUMP	000			1399.65
STEAM TO HEATER (7 PC DELTA P)		3.298		1172.79
FLOW FROM MAKEUP SOURCE	7855			321.46
FLOW FROM FW. BELOW HEATER 1	ŏ			321.46
DRAINS ENTERING	11866			118.57
DRAINS PUMPED TO FEEDWATER		3.298	145 0	
FEEDWATER AFTER DRAIN ENTRY	255717		140.6	
FEEDWATER LEAVING (5 DEG TTD)	234216			108.39
FEEDWATER ENTERING	234216		96.3	
reebwaren entenino	204210		70.3	04.00
STEAM SEAL REGULATOR				
FLOW FROM VALVE STEM PACKING	248			1477.70
FLOW FROM 3-R PACKING SEAL	583			1311.84
FLOW FROM 2-R PACKING SEAL	49			1320.80
FLOW TO 2-R PACKING SEAL	1336			1399.65
MAKE-UP FROM TURBINE INLET	456			1477.70
DUMP TO HEATER NO. 1 EXTR	0			1399.65
		0.0.0		10//100
GLAND SEAL CONDENSER				
STEAM FROM 3-R PACKING VENT	189			1311.84
STEAM FROM 2-R PACKING VENT	284			1320.80
STEAM FROM 2-R PACKING VENT	479			1399.65
FEEDWATER LEAVING	234216		96.3	64.53
FEEDWATER ENTERING	234216		91.5	59.74
DRAINS TO CONDENSER	951			179.48
FLOW FROM F.W. TO HEATER NO. 1	0	3.298	91.5	321.46
FEEDWATER PUMP (O. BTU HEAT RISE)				
FEEDWATER LEAVING		100.0		
FEEDWATER ENTERING	234216		91.7	59.74
CONDENSER				
STEAM TO CONDENSER	116633	0 7747		1088 01
DRAINS ENTERING	951	0./36/		1087.01
FEEDWATER LEAVING	234216	0 7747	G1 7	E0 74
FILIWHICK LEAVING	234218	0./38/	71./	27.74
				92 (rev.1)
			page	3 of 3

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 86 of 90

Babcock & Wilcox PGG Canada	
B&W Ref. 312C	

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

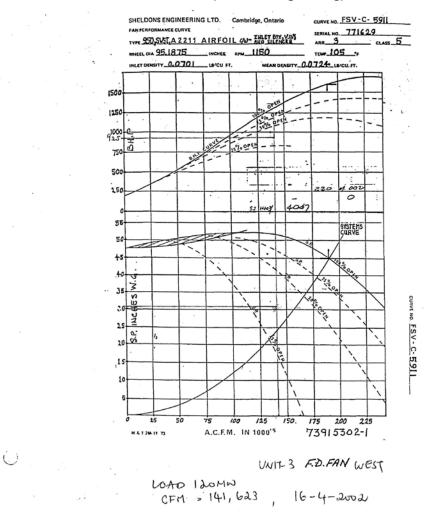

8.3 B&W Boiler Performance Data Sheet (C/7391)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 87 of 90

Babcock & Wilcox PGG Canada B&W Ref. 312C Newfoundland and Labrador Hydro Holyrood Units #1,2,3

8.4 Unit #3 Heat Balance Diagram (NLH 1403-200-M001 Rev 2)



Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 88 of 90

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

B&W Ref. 312C

8.5 Unit #3 FD Fan Performance Curve (Sheldons Engineering)

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 89 of 90

B&W Ref. 312C

Newfoundland and Labrador Hydro Holyrood Units #1,2,3

8.6 ARVOS Replacement Hot End Heating Surfaces Performance (Unit #3)

Performance Tabulation	LAP-HOW1019	01/17/18
Selection Designation:	HOW-1019	HOW-1019
	Present	Proposed
Model Number:	2-22.5-VI	2-22.5-VI
Element Configuration:	HE: 32.0" 22LA DU ND	HE: 30.0" 22LA DN7 [™] ND
	CE: 12.0" 22/20E NF6 FW	CE: 12.0" 22/20E NF6 FW
Elevation:	100	100
Flows, LBS./HR.	Design	Design
AIR ENTERING	1,111,000	1,110,500
AIR LEAVING	1,000,000	1,000,000
GAS ENTERING	1,071,000	1,071,000
GAS LEAVING	1,182,000	1,181,500
Temperatures, DEG. F.		
AIR ENTERING	128.3	128.3
AIR LEAVING	560.	560.
GAS ENTERING	734.	734.
GAS LEAVING UNCORR.	362.	362.
GAS LEAVING CORR.	342.	342.
AVE COLD END TEMP	245.	245.
Pressures, IN.WC		
PRESSURE DROP AIR	2.1	1.85
PRESSURE DROP GAS	2.85	2.5
HOT END DIFFERENTIAL	11.0	11.0
COLD END DIFFERENTIAL	15.95	15.35
RATIO OF SPECIFIC HEATS	0.923	0.923

Note: The information included herein is the proprietary and confidential property of ARVOS Ljungstrom LLC, and is not to be copied or disseminated without written permission from ARVOS Ljungstrom LLC. Performance tabulation is for reference only.

Newfoundland and Labrador Hydro (NLH) Holyrood Station Engineering Study – Unit Capacity Limitations

Page 90 of 90

IN THE MATTER OF the Electrical Power Control Act, RSNL 1994, Chapter E-5.1 (the EPCA) and the Public Utilities Act, RSNL 1990, Chapter P-47 (the Act), and regulations thereunder;

AND IN THE MATTER OF an Application by Newfoundland and Labrador Hydro for approval of capital expenditures to increase the generating capacity at the Holyrood Thermal Generating Station pursuant to Subsection 41(3) of the Act.

AFFIDAVIT

I, Jennifer Williams, Professional Engineer, of St. John's in the Province of Newfoundland and

Labrador, make oath and say as follows:

- 1. I am the VP, Production of Newfoundland and Labrador Hydro, the Applicant named in the attached Application.
- 2. I have read and understand the foregoing Application.
- 3. I have personal knowledge of the facts contained therein, except where otherwise indicated, and they are true to the best of my knowledge, information and belief.

SWORN at St. John's in the Province of Newfoundland and Labrador this <u>1</u>^{ff} day of June, 2018, before me:

Barrister - Newfoundland and Labrador

Jennifer Williams

1	(DRAFT ORDER)
2	NEWFOUNDLAND AND LABRADOR
3	BOARD OF COMMISSIONERS OF PUBLIC UTILITIES
4 5	AN ORDER OF THE BOARD
6	NO D.U. (2010)
7	NO. P.U(2018)
8 9	IN THE MATTER OF the <i>Electrical Power</i>
9 10	Control Act, RSNL 1994, Chapter E-5.1 (the
10	<i>EPCA</i>) and the <i>Public Utilities Act</i> , RSNL 1990,
12	Chapter P-47 (the <i>Act</i>), and regulations thereunder;
12	Chapter 1 -47 (the <i>fier)</i> , and regulations thereunder,
14	
15	AND IN THE MATTER OF an Application by
16	Newfoundland and Labrador Hydro for approval
17	of capital expenditures to increase the generating
18	capacity at the Holyrood Thermal Generating
19	Station pursuant to Subsection 41(3) of the Act.
20	
21	
22	WHEREAS Newfoundland and Labrador Hydro (Hydro) is a corporation continued and existing
23	under the Hydro Corporation Act, 2007, is a public utility within the meaning of the Act, and is
24	subject to the provisions of the Electrical Power Control Act, 1994; and
25	
26	WHEREAS Section 41(3) of the Act requires that a public utility not proceed with the
27	construction, purchase or lease of improvements or additions to its property where:
28	a) the cost of construction or purchase is in excess of \$50,000; or
29	b) the cost of the lease is in excess of \$5,000 in a year of the lease,
30	without prior approval of the Board; and
31	
32	WHEREAS in Order No. P.U. 43(2017) the Board approved Hydro's 2017 Capital Budget in
33 34	the amount of \$170,868,300; and
34 35	WHEREAS in Order No. P.U. 5(2018) the Board approved Hydro's proposed capital
36	expenditures for Hydraulic Generation Refurbishment and Modernization in the amount of
37	\$10,325,400 in 2018 and \$4,283,100 in 2019, and
38	ϕ 10,525, 100 III 2010 and ϕ 1,205,100 III 2017, and
39	WHEREAS on May 31, 2018, Hydro applied to the Board for approval to proceed with capital
40	expenditures to increase the generating capacity at the Holyrood Thermal Generating, including
41	replacement of the hot end air heater baskets in the boilers on each of Units 1, 2 and 3, and,
42	replacement of the worn air heater sector plate liners and seals on Unit 3; and
43	
44	WHEREAS the capital cost of the project is estimated to be \$2,560,500; and
45	

1	WHE	REAS the Board is satisfied that the capital expend	itures at the Hol	lyrood Thermal	
2	Generating Station are necessary to allow Hydro to provide service and facilities which are				
3	reasonably safe and adequate and just and reasonable.				
4					
5	IT IS	THEREFORE ORDERED THAT:			
6					
7	1.	The proposed capital expenditures to increase the	0 0 1		
8		Thermal Generating Station, including replacing the			
9		boilers on each of Units 1, 2 and 3, and, replacing		1	
10		and seals on Unit 3, at an estimated capital cost of	\$2,560,500 is a	pproved.	
11	2		C (1 ' A 1'	<i>.</i> •	
12	2.	Hydro shall pay all expenses of the Board arising	from this Applie	cation.	
13	рате	D at St. John's Newfoundland and Labradon this	day of	2019	
14 15	DAIE	CD at St. John's, Newfoundland and Labrador, this	day of	, 2018.	
15 16					
17					
18					
19					
20					
21					
22					
23					
24					
25					